Posts

Invasive Non-Arthroplasty Treatment Options for Knee Osteoarthritis: Review

Journal of Clinical Orthopaedics | Vol 8 | Issue 1 |  Jan-Jun 2023 | page: 08-17 | Rohan G Reddy, YuChia Wang, Ryan Scully, Savyasachi C Thakkar

DOI: :10.13107/jcorth.2023.v08i01.549


Author: Rohan G Reddy [1], YuChia Wang [2], Ryan Scully [3], Savyasachi C Thakkar [4]

[1] Orthopaedic Research Collaborative (ORC); Johns Hopkins University, Baltimore, Maryland, United States, ,
[2] Orthopaedic Research Collaborative (ORC);Department of Orthopaedic Surgery, Eastern Virginia Medical School, Norfolk, Virginia, United States,
[3] Orthopaedic Research Collaborative (ORC); Department of Orthopaedic Surgery, Naval Hospital Camp Pendleton, Oceanside, California, United States,

[4] Orthopaedic Research Collaborative (ORC); Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland, United States.

Address of Correspondence
Dr. Rohan G Reddy,

Johns Hopkins University, Baltimore, Maryland, United States.

E-mail: rreddy19@jhu.edu


Abstract

Introduction: Knee osteoarthritis (KOA) is one of the most common joint diseases in the world, such that there exists a variety of treatment methods, ranging from conservative treatments such as physical therapy and weight loss to total replacement of the diseased joint. Invasive non-arthroplasty treatment methods are growing in popularity and this review aims to explore the current literature. Better understanding of these alternatives could allow orthopedic surgeons and primary care providers to offer poor arthroplasty candidates meaningful symptomatic relief.

Materials and Methods: A literature review using PubMed, Google Scholar, and SCOPUS was performed to examine the following invasive non-arthroplasty treatment options: Corticosteroid injections (CS), viscosupplementation, platelet-rich plasma injections, stem cell injections, ozone therapy, prolotherapy, radiofrequency nerve ablation (RFA), arthroscopy, and osteotomy. Articles with complete data on the outcomes following these treatment methods were included in the study.

Results: CSs showed strong efficacy in providing short-term pain relief, while viscosupplementation and platelet-rich plasma have shown to be effective in long-term management as well. Aside from the more common injectable treatment options, newer options such as stem cell injection and ozone therapy have shown clinical efficacy while prolotherapy and RFA are still early-stage treatment options. Still, further studies are required to better assess these emerging therapies. Operatively, arthroscopic surgery has shown to be minimally effective while osteotomy demonstrated effective pain and functional improvement.

Conclusion: Multiple therapeutic options exist for invasive management of KOA to a different degree of effectiveness and efficacy. We have analyzed the outcomes of multiple invasive non-arthroplasty treatment options for KOA. This review can better inform patients and surgeons of the pros and cons of different KOA treatment methods. Newer conservative options may have positive clinical implications but will require further investigation. Operative alternatives to arthroplasty can provide symptomatic relief but may increase the associated risk and complexity should the need for arthroplasty ever arises.

Keywords: Total knee arthroplasty, injections, radiofrequency nerve ablation, arthroscopy, osteotomy.


References

  1. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med 2010;26:355-69.
  2. Billesberger LM, Fisher KM, Qadri YJ, Boortz-Marx RL. Procedural treatments for knee osteoarthritis: A review of current injectable therapies. Pain Res Manag 2020;2020:3873098.
  3. Martin CL, Browne JA. Intra-articular corticosteroid injections for symptomatic knee osteoarthritis: What the orthopaedic provider needs to know. J Am Acad Orthop Surg 2019;27:e758-66.
  4. Kaplan DJ, Haskel JD, Kirby DJ, Bloom DA, Youm T. The simplified science of corticosteroids for clinicians. JBJS Rev2020;8:
  5. American Academy of Orthopaedic Surgeons. Management of Osteoarthritis of the Knee (Non-Arthroplasty) Evidence-Based Clinical Practice Guideline. 3rd United States: American Academy of Orthopaedic Surgeons; 2021. Available from: https://www.aaos.org/oak3cpg. Last accessed 25 Janurary 2023.
  6. Matzkin EG, Curry EJ, Kong Q, Rogers MJ, Henry M, Smith EL. Efficacy and treatment response of intra-articular corticosteroid injections in patients with symptomatic knee osteoarthritis. J Am Acad Orthop Surg2017;25:703-14.
  7. Najm A, Alunno A, Gwinnutt JM, Weill C, Berenbaum F. Efficacy of intra-articular corticosteroid injections in knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Joint Bone Spine 2021;88:105198.
  8. WerneckeC, BraunHJ, DragooJL. The effect of intra-articular corticosteroids on articular cartilage: A systematic review. Orthop J Sports Med2015;3.
  9. McAlindon TE, LaValley MP, Harvey WF, Price LL, Driban JB, Zhang M, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: A randomized clinical trial. JAMA 2017;317:1967-75.
  10. Altman R, Hackel J, Niazi F, Shaw P, Nicholls M. Efficacy and safety of repeated courses of hyaluronic acid injections for knee osteoarthritis: A systematic review. Semin Arthritis Rheum 2018;48:168-75.
  11. Tang JZ, Nie MJ, Zhao JZ, Zhang GC, Zhang Q, Wang B. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: A meta-analysis. J Orthop Surg Res 2020;15:403.
  12. Navarro-Sarabia F, Coronel P, Collantes E, Navarro FJ, de la Serna AR, Naranjo A, et al. A 40-month multicentre, randomised placebo-controlled study to assess the efficacy and carry-over effect of repeated intra-articular injections of hyaluronic acid in knee osteoarthritis: The AMELIA project. Ann rheum Dis 2011;70:1957-62.
  13. He W, Kuang M, Zhao J, Sun L, Lu B, Wang Y, et al. Efficacy and safety of intraarticular hyaluronic acid and corticosteroid for knee osteoarthritis: A meta-analysis. Int J Surg 2017;39:95-103.
  14. Smith C, Patel R, Vannabouathong C, Sales B, Rabinovich A, McCormack R, et al. Combined intra-articular injection of corticosteroid and hyaluronic acid reduces pain compared to hyaluronic acid alone in the treatment of knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2018;27:1974-83.
  15. Concoff A, Sancheti P, Niazi F, Shaw P, Rosen J. The efficacy of multiple versus single hyaluronic acid injections: A systematic review and meta-analysis. BMC Musculoskelet Disord2017;18:
  16. Tan J, Chen H, Zhao L, Huang W. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: A meta-analysis of 26 randomized controlled trials. Arthroscopy 2021;37:309-25.
  17. Richardson SS, Schairer WW, Sculco TP, Sculco PK. Comparison of infection risk with corticosteroid or hyaluronic acid injection prior to total knee arthroplasty. J Bone Joint Surg Am 2019;101:112-8.
  18. Peck J, Slovek A, Miro P, Vij N, Traube B, Lee C, et al. A comprehensive review of viscosupplementation in osteoarthritis of the knee. Orthop Rev (Pavia) 2021;13:25549.
  19. Sundman EA, Cole BJ, Karas V, Valle CD, Tetreault MW, Mohammed MO, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med 2014;42:35-41.
  20. Buul G, Koevoet W, Kops N, Bos PK, Verhaar JA, Weinans H, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med 2011;39:2362-70.
  21. Hong M, Cheng C, Sun X, Yan Y, Zhang Q, Wang W, et al. Efficacy and safety of intra-articular platelet-rich plasma in osteoarthritis knee: A systematic review and meta-analysis. Biomed Res Int 2021;2021:2191926.
  22. Raeissadat SA, Rayegani SM, Hassanabadi H, Fathi M, Ghorbani E, Babaee M, et al. Knee osteoarthritis injection choices: Platelet- rich plasma (PRP) versus hyaluronic acid (A one-year randomized clinical trial). Clin Med Insights Arthritis Musculoskelet Disord 2015;2015:1-8.
  23. UsluGüvendi  E, Aşkin A, Güvendi G, Koçyiğit H. Comparison of efficiency between corticosteroid and platelet rich plasma injection therapies in patients with knee osteoarthritis. Arch Rheumatol2018;33:273-81.
  24. Shen L, Yuan T, Chen S, Xie X, Zhang C. The temporal effect of platelet-rich plasma on pain and physical function in the treatment of knee osteoarthritis: Systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res2017;12:
  25. McLarnon M, Heron N. Intra-articular platelet-rich plasma injections versus intra-articular corticosteroid injections for symptomatic management of knee osteoarthritis: Systematic review and meta-analysis. BMC Musculoskelet Disord 2021;22.
  26. Xu Z, He Z, Shu L, Li X, Ma M, Ye C. Intra-articular platelet-rich plasma combined with hyaluronic acid injection for knee osteoarthritis is superior to platelet-rich plasma or hyaluronic acid alone in inhibiting inflammation and improving pain and function. Arthroscopy 2021;37:903-15.
  27. Karasavvidis T, Totlis T, Gilat R, Cole BJ. Platelet-rich plasma combined with hyaluronic acid improves pain and function compared with hyaluronic acid alone in knee osteoarthritis: A systematic review and meta-analysis. Arthroscopy 2021;37:1277-87.e1.
  28. Aw AA, Leeu JJ, Tao X, Razak HR. Comparing the efficacy of dual platelet-rich plasma (PRP) and hyaluronic acid (HA) therapy with PRP-alone therapy in the treatment of knee osteoarthritis: A systematic review and meta-analysis. J Exp Orthop 2021;8:101.
  29. Piuzzi NS, Ng M, Kantor A, Ng K, Kha S, Mont MA, et al. What is the price and claimed efficacy of platelet-rich plasma injections for the treatment of knee osteoarthritis in the United States? J Knee Surg 2019;32:879-85.
  30. Lee JS, Shim DW, Kang KY, Chae DS, Lee WS. Method categorization of stem cell therapy for degenerative osteoarthritis of the knee: A review. Int J Mol Sci 2021;22.
  31. Song Y, Du H, Dai C, Zhang L, Li S, Hunter DJ, et al. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen Med 2018;13:295-307.
  32. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265-72.
  33. Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal stem cell therapy for osteoarthritis: The critical role of the cell secretome. Front Bioeng Biotechnol2019;7..
  34. Bastos R, Mathias M, Andrade R, Amaral RJ, Schott V, Balduino A, et al. Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: A controlled, double-blind clinical trial. Knee Surg Sports Traumatol Arthrosc 2020;28:1989-99.
  35. Lee WS, Kim HJ, Kim KI, Kim GB, Jin W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: A phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med 2019;8:504-11.
  36. Song Y, Zhang J, Xu H, Lin Z, Chang H, Liu W, et al. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis. J Orthop Translat 2020;24:121-30.
  37. Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Núñez-Córdoba JM, López-Elío S, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). J Transl Med 2018;16.
  38. Momaya AM, McGee AS, Dombrowsky AR, Wild AJ, Faroqui NM, Waldrop RP, et al. The cost variability of orthobiologics. Sports Health 2020;12:94-8.
  39. Sconza C, Respizzi S, Virelli L, Vandenbulcke F, Iacono F, Kon E, et al. Oxygen-Ozone therapy for the treatment of knee osteoarthritis: A systematic review of randomized controlled trials. Arthroscopy 2020;36:277-86.
  40. Costa T, Rodrigues-Manica S, Lopes C, Gomes J, Marona J, Falcão S, et al. Ozone therapy in knee osteoarthritis: A systematic review. Acta Med Port 2018;31:576-80.
  41. De Jesus CC, DosSantos FC, deJesus LM, MonteiroI, Sant’AnaMS, TrevisaniVF. Comparison between intra-articular ozone and placebo in the treatment of knee osteoarthritis: A randomized, double-blinded, placebo-controlled study.PLoS One2017;12:
  42. Raeissadat SA, Hosseini PG, Bahrami MH, Roghani RS, Fathi M, Ahangar AG, et al. The comparison effects of intra-articular injection of platelet rich plasma (PRP), plasma rich in growth factor (PRGF), hyaluronic acid (HA), and ozone in knee osteoarthritis; a one year randomized clinical trial. BMC Musculoskelet Disord 2021;22:134.
  43. Duymus TM, Mutlu S, Dernek B, Komur B, Aydogmus S, Kesiktas FN. Choice of intra-articular injection in treatment of knee osteoarthritis: Platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sports Traumatol Arthrosc 2017;25:485-92.
  44. Giombini A, Menotti F, Di Cesare A, Giovannangeli F, Rizzo M, Moffa S, et al. Comparison between intrarticular injection of hyaluronic acid, oxygen ozone, and the combination of both in the treatment of knee osteoarthrosis. J Biol Regul Homeost Agents 2016;30:621-5.
  45. Sert AT, Sen EI, Esmaeilzadeh S, Ozcan E. The effects of dextrose prolotherapy in symptomatic knee osteoarthritis: A randomized controlled study. J Altern Complement Med 2020;26:409-17.
  46. Sit RW, Wu RW, Rabago D, Reeves KD, Chan DC, Yip BH, et al. Efficacy of intra-articular hypertonic dextrose (prolotherapy) for knee osteoarthritis: A randomized controlled trial. Ann Fam Med 2020;18:235-42.
  47. Rabago D, Mundt M, Zgierska A, Grettie J. Hypertonic dextrose injection (prolotherapy) for knee osteoarthritis: Long term outcomes. Complement Ther Med 2015;23:388-95.
  48. Arias-Vázquez PI, Tovilla-Zárate CA, Legorreta-Ramírez BG, Fonz WB, Magaña-Ricardez D, González-Castro TB, et al. Prolotherapy for knee osteoarthritis using hypertonic dextrose vs other interventional treatments: Systematic review of clinical trials. Adv Rheumatol 2019;59:39.
  49. Iannaccone F, Dixon S, Kaufman A. A review of long-term pain relief after genicular nerve radiofrequency ablation in chronic knee osteoarthritis. Pain Physician 2017;20:E437-44.
  50. Kapural L, Deering JP. A technological overview of cooled radiofrequency ablation and its effectiveness in the management of chronic knee pain. Pain Manag 2020;10:133-40.
  51. Kocayiğit H, Beyaz SG. Comparison of cooled and conventional radiofrequency applications for the treatment of osteoarthritic knee pain. J Anaesthesiol Clin Pharmacol 2021;37:464-8.
  52. Stake S, Agarwal AR, Coombs S, Cohen JS, Golladay GJ, Campbell JC, et al. Total knee arthroplasty after genicular nerve radiofrequency ablation: Reduction in prolonged opioid use without increased postsurgical complications. J Am Acad Orthop Surg Glob Res Rev 2022;6:e22.00125.
  53. Mishra P, Edwards D, Huntoon M, Sobey C, Polkowski G, Corey J, et al. Is preoperative genicular radiofrequency ablation effective for reducing pain following total knee arthroplasty? A pilot randomized clinical trial. Reg Anesth Pain Med 2021;46:752-6.
  54. Qudsi-Sinclair S, Borrás-Rubio E, Abellan-Guillén JF, Del Rey ML, Ruiz-Merino G. A comparison of genicular nerve treatment using either radiofrequency or analgesic block with corticosteroid for pain after a total knee arthroplasty: A double-blind, randomized clinical study. Pain Pract2017;17:578-88.
  55. Protzman NM, Gyi J, Malhotra AD, Kooch JE. Examining the feasibility of radiofrequency treatment for chronic knee pain after total knee arthroplasty. PM R2014;6:373-6.
  56. Hunter C, Davis T, Loudermilk E, Kapura lL, DePalma M. Cooled radiofrequency ablation treatment of the genicular nerves in the treatment of osteoarthritic knee pain: 18- and 24-month results. Pain Pract 2020;20:238-46.
  57. Chen A, Khalouf F, Zora K, DePalma M, Kohan L, Guirguis M, et al. Cooled radiofrequency ablation compared with a single injection of hyaluronic acid for chronic knee pain: A multicenter, randomized clinical trial demonstrating greater efficacy and equivalent safety for cooled radiofrequency ablation. J Bone Joint Surg Am 2020;102:1501-10.
  58. Elawamy A, Kamel EZ, Mahran SA, Abdellatif H, Hassanien M. Efficacy of genicular nerve radiofrequency ablation versus intra-articular platelet rich plasma in chronic knee osteoarthritis: A single-blind randomized clinical trial. Pain Physician 2021;24:127-34.
  59. Felson DT. Arthroscopy as a treatment for knee osteoarthritis. Best Pract Res Clin Rheumatol 2009;24:47-50.
  60. Krych AJ, Bert JM, Levy BA. Treatment of OA of the knee in the middle-aged athlete: The role of arthroscopy. Sports Med Arthrosc Rev2013;21:23-30.
  61. Brophy RH, Fillingham YA. AAOS clinical practice guideline summary: Management of osteoarthritis of the knee (Nonarthroplasty), Third Edition. J Am Acad Orthop Surg 2022;30:e721-9.
  62. Spahn G, Mückley T, Kahl E, Hofmann GO. Factors affecting the outcome of arthroscopy in medial-compartment osteoarthritis of the knee. Arthroscopy 2006;22:1233-40.
  63. Dearing J, Nutton RW. Evidence based factors influencing outcome of arthroscopy in osteoarthritis of the knee. Knee 2008;15:159-63.
  64. Brignardello-Petersen R, Guyatt GH, Buchbinder R, Poolman RW, Schandelmaier S, Chang Y, et al. Knee arthroscopy versus conservative management in patients with degenerative knee disease: A systematic review. BMJ Open 2017;7:e016114.
  65. Delva ML, Samuel LT, Roth A, Yalçin S, Kamath AF. Contemporary knee osteotomy in the United States: High tibial osteotomy and distal femoral osteotomy have comparable complication rates despite differing demographic profiles. J Knee Surg 2021;34:816-21.
  66. Wang JW, Hsu CC. Distal femoral varus osteotomy for osteoarthritis of the knee. Surgical technique. J Bone Joint Surg Am 2006;88 Suppl 1 Pt 1:100-8.
  67. Pornrattanamaneewong C, Ruangsomboon P, Narkbunnam R, Chareancholvanich K. Medial closing-wedge distal femoral varusosteotomy via lateral approach: The modified technique for treating valgus osteoarthritic knee as case series. Siriraj Medical Journal. 2022;74(11):747-753.
  68. Ren YM, Tian MQ, Duan YH, Sun YB, Yang T, Hou WY. Distal tibial tubercle osteotomy can lessen change in patellar height post medial opening wedge high tibial osteotomy? A systematic review and meta-analysis. J Orthop Surg Res 2022;17:
  69. Amendola A, Bonasia DE. Results of high tibial osteotomy: Review of the literature. Int Orthop 2009;34:155-60.
  70. LaPrade RF, Spiridonov SI, Nystrom LM, Jansson KS. Prospective outcomes of young and middle-aged adults with medial compartment osteoarthritis treated with a proximal tibial opening wedge osteotomy. Arthroscopy 2012;28:354-64.
  71. Kunze KN, Beletsky A, Hannon CP, LaPrade RF, Yanke AB, Cole BJ, et al. Return to work and sport after proximal tibial osteotomy and the effects of opening versus closing wedge techniques on adverse outcomes: A systematic review and meta-analysis. Am J Sports Med 2020;48:2295-304.
  72. Ekhtiari S, Haldane CE, deSa D, Simunovic N, Musah lV, Ayeni OR. Return to work and sport following high tibial osteotomy: A systematic review. J Bone Joint Surg Am 2016;98:1568-77.
  73. Jackson JP, Waugh W. Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br 1961;43-B:746-51.
  74. Aglietti P, Buzzi R, Vena LM, Baldini A, Mondaini A. High tibial valgus osteotomy for medial gonarthrosis: A 10- to 21-year study. J Knee Surg 2003;16:21-6.
  75. Sprenger TR, Doerzbacher JF. Tibial osteotomy for the treatment of varus gonarthrosis. Survival and failure analysis to twenty-two years. J Bone Joint Surg Am 2003;85:469-74.
  76. Wu L, Hahne HJ, Hassenpflug T. Long-term follow-up study of high tibial osteotomy for medial compartment osteoarthrosis. Chin J Traumatol 2004;7:348-53.
  77. Bonasia DE, Dettoni F, Sito G, Blonna D, Marmotti A, Bruzzone M, et al. Medial opening wedge high tibial osteotomy for medial compartment overload/arthritis in the varus knee. Am J Sports Med 2014;42:690-8.
  78. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P. Does obesity and nicotine abuse influence the outcome and complication rate after open-wedge high tibial osteotomy? A retrospective evaluation of five hundred and thirty three patients. Int Orthop 2014;38:55-60.
  79. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P. Outcome after high tibial open-wedge osteotomy: A retrospective evaluation of 533 patients. Knee Surg Sports Traumatol Arthrosc 2013;21:170-80.
  80. Salzmann GM, Ahrens P, Naal FD, El-Azab H, Spang JT, Imhoff AB, et al. Sporting activity after high tibial osteotomy for the treatment of medial compartment knee osteoarthritis. Am J Sports Med 2009;37:312-8.
  81. Schuster P, Geßlein M, Schlumberger M, Mayer P, Mayr R, Oremek D, et al. Ten-year results of medial open-wedge high tibial osteotomy and chondral resurfacing in severe medial osteoarthritis and varus malalignment. Am J Sports Med 2018;46:1362-70.
  82. Dugdale TW, Noyes FR, Styer D. Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res1992;274:248-64.
  83. Kosashvili Y, Safir O, Gross A, Morag G, Lakstein D, Backstein D. Distal femoral varus osteotomy for lateral osteoarthritis of the knee: A minimum ten-year follow-up. Int Orthop 2010;34:249-54.
  84. Coventry M. Osteotomy about the knee for degenerative and rheumatoid arthritis. J Bone Joint Surg Am 1973;55:23-48.
  85. Buda R, Castagnini F, Gorgolini G, Baldassarri M, Vannini F. Distal femoral medial closing wedge osteotomy for degenerative valgus knee: Mid-term results in active patients. Acta Orthop Belg 2017;83:140-5.

 

How to Cite this article: Reddy RG, Wang Y, Scully R, Thakkar SC. Invasive Non-arthroplasty Treatment Options for Knee Osteoarthritis: Review. Journal of Clinical Orthopaedics Jan-Jun 2023;8(1):08-17.

 (Abstract    Full Text HTML)   (Download PDF)


Ultrasonic Bone Scalpel and Its Role In Spine Surgeries : An Article Review

Journal of Clinical Orthopaedics | Vol 7 | Issue 1 |  Jan-Jun 2022 | page: 20-27| TausifAhmed Shikalgar, Priyank Patel, Abhay Nene, Shubhanshu Bhaladhare, Sanjay Puri, Manojkumar Gaddiker

DOI:10.13107/jcorth.2022.v07i01.461


Author: TausifAhmed Shikalgar [1], Priyank Patel [1], Abhay Nene [1], Shubhanshu Bhaladhare [1], Sanjay Puri [1], Manojkumar Gaddiker [1]

[1] Department of Orthopaedics, Lilavati Hospital and Research Centre, Bandra (W), Mumbai 400050, India

 

Address of Correspondence
Dr. Tausif Ahmed Shikalgar,
Fellow Spine Surgery, Under Dr. Abhay Nene, Lilavati Hospital and Research Centre, Bandra (W), Mumbai – 400 050, Maharashtra, India.
E-mail: Dr.tausifahmedshikalgar@gmail.com


Abstract

The past few decades have seen tremendous improvement in the field of spine surgery. Spine surgery involves a number of procedures from simple laminectomy to deformity correction. This requires high surgical skills and care, which is achieved by a number of instruments, which, in turn, protect surgeons from committing complications. Recent advancements in spine surgery include ultrasonic bone scalpel, which cut bone accurately and precisely. It is a unique surgical device which offers a controlled osteotomy which slices the hard bone while the soft tissues remain largely unaffected. The major benefits of using this modern instrument are the soft-tissue sparing, controlled cutting, reduced bleeding, and thereby increasing the effectiveness. The aim of this article is to summarize its uses in current practice of spine surgeons and to focus on its advantages and complications associated with uses of this device.

Keywords: Ultrasonic bone scalpel, spine surgery, complications, safety, osteotomy


References

  1. Walker CT, Kakarla UK, Chang SW, Sonntag VK. History and advances in spinal neurosurgery. J Neurosurg Spine 2019;31:775-85.
  2. Grochulla F, Vieweg U. Surgical motor systems in spinal surgery. In: Vieweg U, Grochulla F, editors. Manual of Spine Surgery. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 69-74.
  3. Bydon M, Macki M, Xu R, Ain MC, Ahn ES, Jallo GI. Spinal decompression in achondroplastic patients using high-speed drill versus ultrasonic bone curette: Technical note and outcomes in 30 cases. J Pediatr Orthop 2014;34:780-6.
  4. Nasser R, Yadla S, Maltenfort MG, Harrop JS, Anderson DG, Vaccaro AR, et al. Complications in spine surgery. J Neurosurg Spine 2010;13:14457.
  5. Ratliff JK, Lebude B, Albert T, Anene-Maidoh T, Anderson G, Dagostino P, et al. Complications in spinal surgery: Comparative survey of spine surgeons and patients who underwent spinal surgery. J Neurosurg Spine 2009;10:578-84.
  6. Nakase H, Matsuda R, Shin Y, Park YS, Sakaki T. The use of ultrasonic bone curettes in spinal surgery. Acta Neurochir 2006;148:207-12; discussion 212-3.
  7. Nakagawa H, Kim SD, Mizuno J, Ohara Y, Ito K. Technical advantages of an ultrasonic bone curette in spinal surgery. J Neurosurg Spine 2005;2:431-5.
  8. Pakzaban P. BoneScalpelTM Ultrasonic Bone Cutting System: Neurosurgical and Orthopaedic Applications, Aesculap Power Systems; 2012.
  9. BoneScalpel TM Ultrasonic Bone Dissector: Applications in Spine Surgery and Surgical Technique Guide.
  10. Moon RD, Srikandarajah N, Clark S, Wilby MJ, Pigott TD. Primary lumbar decompression using ultrasonic bone curette compared to conventional technique. Br J Neurosurg 2021;35:775-9.
  11. Hu X, Ohnmeiss DD, Lieberman IH. Use of an ultrasonic osteotome device in spine surgery: Experience from the first 128 patients. Eur Spine J 2013;22:2845-9.
  12. Hazer DB, Yaşar B, Rosberg HE, Akbaş A. Technical aspects on the use of ultrasonic bone shaver in spine surgery: Experience in 307 patients. Biomed Res Int 2016;2016:8428530.
  13. Bydon M, Xu R, Papademetriou K, Sciubba DM, Wolinsky JP, Witham TF, et al. Safety of spinal decompression using an ultra-sonic bone curette compared with a high-speed drill: Outcomes in 337 patients. J Neurosurg Spine 2013;18:627-33.
  14. Al-Mahfoudh R, Mitchell PS, Wilby M, Crooks D, Barrett C, Pillay R, et al. Management of giant calcified thoracic disks and description of the trench vertebrectomy technique. Glob Spine J 2016;6:584-91.
  15. Dave BR, Krishnan A, Rai RR, Degulmadi D, Mayi S, Gudhe M. The effectiveness and safety of ultrasonic bone scalpel versus conventional method in cervical laminectomy: A retrospective study of 311 patients. Glob Spine J 2020;10:760-6.
  16. Li K, Zhang W, Li B, Xu H, Li Z, Luo D, et al. Safety and efficacy of cervical laminoplasty using a piezosurgery device compared with a high-speed drill. Medicine (Baltimore) 2016;95:e4913.
  17. Onen MR, Yuvruk E, Akay S, Naderi S, The reliability of the ultrasonic bone scalpel in cervical spondylotic myelopathy: A comparative study of 46 patients. World Neurosurg 2015;84:1962-7.
  18. Al-Mahfoudh R, Qattan E, Ellenbogen JR, Wilby M, Barrett C, Pigott T. Applications of the ultrasonic bone cutter in spinal surgery our preliminary experience. Br J Neurosurg 2014;28:56-60.
  19. Shousha M, El-Saghir H, Boehm H. Corpectomy of the fifth lumbar vertebra, a challenging procedure. J Spinal Disord Tech 2014;27:347-51.
  20. Hu SS. Blood loss in adult spinal surgery. Eur Spine J 2004;13Suppl 1:S3-5.
  21. Dave BR, Degulmadi D, Dahibhate S, Krishnan A, Patel D. Ultrasonic bone scalpel: Utility in cervical corpectomy. A technical note. Eur Spine J 2019;28:380-5.
  22. Jenis LG, An HS. Spine update. Lumbar foraminal stenosis. Spine 2000;25:389-94.
  23. Morimoto D, Isu T, Kim K, Sugawara A, Matsumoto R, Isobe M. Microsurgical medial fenestration with an ultrasonic bone curette for lumbar foraminal stenosis. J Nippon Med Sch 2012;79:327-34.
  24. Chen HT, Hsu CC, Lu ML, Chen SH, Chen JM, Wu RW. Effects of combined use of ultrasonic bone scalpel and hemostatic matrix on perioperative blood loss and surgical duration in degenerative thoracolumbar spine surgery. Biomed Res Int 2019;2019:6286528.
  25. Hamburger C. T-laminoplasty-a surgical approach for cervicalspondylotic myelopathy. Technical note. Acta Neurochir  1995;132:131-3.
  26. Herman JM, Sonntag VK. Cervical corpectomy and plate fixation for postlaminectomy kyphosis. J Neurosurg 1994;80:963-70.
  27. Hirabayashi K, Watanabe K, Wakano K, Suzuki N, Satomi K, Ishii Y. Expansive open-door laminoplasty for cervical spinal stenotic myelopathy. Spine 1983;8:693-9.
  28. Ito K, Ishizaka S, Sasaki T, Miyahara T, Horiuchi T, Sakai K, et al. Safe and minimally invasive laminoplastic laminotomy using an ultrasonic bone curette for spinal surgery: Technical note. Surg Neurol 2009;72:470-5 discussion 475.
  29.  Park AE, Heller JG. Cervical laminoplasty: Use of a novel titanium plate to maintain canal expansion-surgical technique. J Spinal Disord Tech 2004;17:265-71.
  30. Matsuoka H, Itoh Y, Numazawa S, Tomii M, Watanabe K, Hirano Y, et al. Recapping hemilaminoplasty for spinal surgical disorders using ultrasonic bone curette. Surg Neurol Int 2012;3:70.
  31. Parker SL, Kretzer RM, Recinos PF, Molina CA, Wolinsky JP, Jallo GI, et al. Ultrasonic BoneScalpel for osteoplastic laminoplasty in the resection of intradural spinal pathology: Case series and technical note. Neurosurgery 2013;73 Suppl Operative 1:ons61-6.
  32. Barbanera A, Serchi E, Fiorenza V, Nina P, Andreoli A. Giant calcified thoracic herniated disc: Considerations aiming a proper surgical strategy. J Neurosurg Sci 2009;53:19-25 discussion 25-6.
  33. Okada Y, Shimizu K, Ido K, Kotani S. Multiple thoracic disc herniations: Case report and review of the literature. Spinal Cord 1997;35:183-6.
  34. Cornips EM, Janssen ML, Beuls EA. Thoracic disc herniation and acute myelopathy: Clinical presentation, neuroimaging findings, surgical considerations, and outcome. J Neurosurg. Spine 2011;14:520-8.
  35. Hott JS, Feiz-Erfan I, Kenny K, Dickman CA. Surgical management of giant herniated thoracic discs: Analysis of 20 cases. J  eurosurg Spine 2005;3:191-7.
  36. Wahlquist S, Nelson S, Glivar P. Effect of the ultrasonic bone scalpel on blood loss during pediatric spinal deformity correction surgery. Spine Deform 2019;7:582-7.
  37. Garg S, Thomas J, Darland H, Kim E, Kittelson J, Erickson M, et al. Ultrasonic bone scalpel (USBS) does not reduce blood loss during posterior spinal fusion (PSF) in patients with adolescent idiopathic scoliosis (AIS): Randomized clinical trial. Spine (Phila Pa 1976) 2021;46:845-51.
  38. Kim K, Isu T, Matsumoto R, Isobe M, Kogure K. Surgical pitfalls of an ultrasonic bone curette (Sonopet) in spinal surgery. Oper Neurosurg 2006;59 Suppl 4:ONS-390; discussion ONS393.
  39. Brooks AT, Nelson CL, Stewart CL, Skinner RA, Siems ML. Effect of an ultrasonic device on temperatures generated in bone and on bone-cement structure. J Arthroplast 1993;8:413-8.
  40. Gleizal A, Bera JC, Lavandier B, Beziat JL. Piezoelectric osteotomy: A new technique for bone surgery advantages in craniofacial surgery. Childs Nerv Syst 2007;23:509-13.

 

How to Cite this article: Shikalgar TA, Patel P, Nene A, Bhaladhare S, Puri S, Gaddikeri M. Ultrasonic Bone Scalpel and its Role in Spine Surgeries: An Article Review. Journal of Clinical Orthopaedics Jan-Jun 2022;7(1):20-27.

 (Abstract    Full Text HTML)   (Download PDF)


Current Concepts in High Tibial Osteotomy

Journal of Clinical Orthopaedics | Vol 6 | Issue 1 |  Jan-Jun 2021 | page:24-31 | Vikram Arun Mhaskar, Yogesh Jain, Jitendra Maheshwari


Author: Vikram Arun Mhaskar [1], Yogesh Jain [1], Jitendra Maheshwari [1]

[1] Knee & Shoulder Clinic, New Delhi, Max Superspecilaity Hospital Saket, New Delhi, India

Address of Correspondence
Dr. Vikram Arun Mhaskar,
Knee & Shoulder Clinic, New Delhi, Max Superspecilaity Hospital Saket, New Delhi, India
E-mail: drvikrammhaskar@gmail.com


Abstract

Background: High tibial osteotomy is an effective procedure for the management of medial compartment osteoarthritis. This paper intends to analyze the current indications, contra indications, technique, complications, survival, and recent advances of this procedure.

Method: Literature review was done by searching journals with “High tibial osteotomy,” “Indications of HTO,” “Alignment in HTO,” “Survival and clinical outcomes of HTO,” and “Recent advances in HTO.” A total of 12 articles were found suitable for this study and reviewed.

Outcomes: Indications have largely remained the same except for thrust, which was earlier, a contra indication, Biplanar osteotomy, patient specific instrumentation; 3D printing and computer navigation are the recent technical modifications. The rate of complications is variable in different studies and the 5-year survival is still over 90% in most studies. Rate of serious complications is low but minor complications are high.

Conclusion: HTO is a successful procedure in treating medial compartment OA in isolation or with ligament deficiencies with a good 5 and 10-year survival. Recent advances have focused on improving planning, rehabilitation, and accuracy of alignment.

Keywords: High Tibial Osteotomy, osteotomy, deformity, gene varum, osteoarthritis, knee preservation, deformity correction


References

  1. Takeuchi R, Umemoto Y, Aratake M, Bito H, Saito I, Kumagai K, Sasaki Y, Akamatsu Y, Ishikawa H, Koshino T, Saito T. A mid term comparison of open wedge high tibial osteotomy vs unicompartmental knee arthroplasty for medial compartment osteoarthritis of the knee. Journal of Orthopaedic Surgery and Research. 2010 Dec;5(1):65.
  2. Petersen W, Metzlaff S. Open wedge high tibial osteotomy (HTO) versus mobile bearing unicondylar medial joint replacement: five years results. Archives of orthopaedic and trauma surgery. 2016 Jul 1;136(7):983-9.
  3. Wright JM, Crockett HC, Slawski DP, Madsen MW, Windsor RE. High tibial osteotomy. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2005 Jul 1;13(4):279-89.
  4. Brouwer RW, Bierma-Zeinstra SM, Van Koeveringe AJ, Verhaar JA. Patellar height and the inclination of the tibial plateau after high tibial osteotomy: the open versus the closed-wedge technique. The Journal of bone and joint surgery. British volume. 2005 Sep;87(9):1227-32.
  5. . Figueroa F, Mhaskar V, Scholes C, Pearlman A, Coolican M, Parker D, Fritsch B. Symptomatic relief in medial opening wedge high tibial osteotomies for the treatment of knee osteoarthritis is influenced by concurrent procedures and preoperative pain level. Journal of ISAKOS: Joint Disorders & Orthopaedic Sports Medicine. 2018 Jan 1;3(1):8-16.
  6. Sabzevari S, Ebrahimpour A, Roudi MK, Kachooei AR. High tibial osteotomy: a systematic review and current concept. Archives of Bone and Joint Surgery. 2016 Jun;4(3):204.
  7. Pape D, Kohn D, Van Giffen N, Hoffmann A, Seil R, Lorbach O. Differences in fixation stability between spacer plate and plate fixator following high tibial osteotomy. Knee surgery, sports traumatology, arthroscopy. 2013 Jan 1;21(1):82-9.
  8. Kim JH, Kim HJ, Lee DH. Survival of opening versus closing wedge high tibial osteotomy: a meta-analysis. Scientific Reports. 2017 Aug 4;7(1):1-7.
  9. Mhaskar VA, Maheshwari J, Ugrasen H. Bilateral HTO in same sitting: Perioperative challenge or feasible option?. Journal of Arthroscopy and Joint Surgery. 2020 Apr 1;7(2):69-73. 16.
  10. Rand JA, Neyret P. ISAKOS meeting on the management of osteoarthritis of the knee prior to total knee arthroplasty. In ISAKOS congress 2005
  11. Flecher X, Parratte S, Aubaniac JM, Argenson JN. A12-28-year followup study of closing wedge high tibial osteotomy. Clinical Orthopaedics and Related Research®. 2006 Nov 1;452:91-6.
  12. Naudie D, Bourne RB, Rorabeck CH, Bourne TJ. The Install Award. Survivorship of the high tibial valgus osteotomy. A10-to[1]22-year followup study. Clinical orthopaedics and related research. 1999 Oct(367):18-27.
  13. Michaela G, Florian P, Michael L, Christian B. Long-term outcome after high tibial osteotomy. Archives of orthopaedic and trauma surgery. 2008 Jan 1;128(1):111-5.
  14. Aglietti P, Rinonapoli EM, Stringa GA, Taviani AN. Tibial osteotomy for the varus osteoarthritic knee. Clinical orthopaedics and related research. 1983 Jun(176):239-51.
  15. Ivarsson IN, Myrnerts RU, Gillquist J. High tibial osteotomy for medial osteoarthritis of the knee. A5 to 7 and 11 year follow-up. The Journal of bone and joint surgery. British volume. 1990 Mar;72(2):238-44.
  16. RUDAN JF, SIMURDAMA. High tibial osteotomy: a prospective clinical and roentgenographic review. Clinical Orthopaedics and Related Research®. 1990 Jun 1;255:251-6.
  17. Insall JN, Joseph DM, Msika C. High tibial osteotomy for varus gonarthrosis. A long-term follow-up study. The Journal of bone and joint surgery. American volume. 1984 Sep;66(7):1040-8.
  18. Stuchin SA, Johanson NA, Lachiewicz PF, Mont MA. Surgical management of inflammatory arthritis of the adult hip and knee. Instructional course lectures. 1999;48:93-109
  19. Markolf KL, Bargar WL, Shoemaker SC, Amstutz HC. The role of joint load in knee stability. JBJS. 1981 Apr 1;63(4):570-85.
  20. Lee DC, Byun SJ. High tibial osteotomy. Knee surgery & related research. 2012 Jun;24(2):61.
  21. Murphy SB. Tibial osteotomy for genu varum. Indications, preoperative planning, and technique. The Orthopedic Clinics of North America. 1994 Jul 1;25(3):477-82.
  22. Solayar GN, Chinappa J, Harris IA, Chen DB, Macdessi SJ. A comparison of plain radiography with computer tomography in determining coronal and sagittal alignments following total knee arthroplasty. Malaysian Orthopaedic Journal. 2017 Jul;11(2):45.
  23. Müller M, Strecker W. Arthroscopy prior to osteotomy around the knee?. Archives of orthopaedic and trauma surgery. 2008 Nov 1;128(11):1217-21.
  24. Friemert B, Oberländer Y, Danz B, Häberle HJ, Bähren W, Gerngross H, Schwarz W. MRI vs. arthroscopy in the diagnosis of cartilage lesions in the knee. Can MRI take place of arthroscopy?. Zentralblatt fur Chirurgie. 2002 Oct 1;127(10):822-7.
  25. Akizuki S, Shibakawa A, Takizawa T, Yamazaki I, Horiuchi H. The long-term outcome of high tibial osteotomy: a ten-to 20- year follow-up. The Journal of Bone and Joint Surgery. British volume. 2008 May;90(5):592-6
  26. Berman AT, Bosacco SJ, Kirshner ST, Avolio Jr A. Factors influencing long-term results in high tibial osteotomy. Clinical orthopaedics and related research. 1991 Nov 1(272):192-8. 28. Bonnin M, Chambat P. Current status of valgus angle, tibial head closing wedge osteotomy in media gonarthrosis. Der Orthopade. 2004 Feb;33(2):135-42.
  27. Niemeyer P, Schmal H, Hauschild O, von Heyden J, Südkamp NP, Köstler W. Open-wedge osteotomy using an internal plate fixator in patients with medial-compartment gonarthritis and varus malalignment: 3-year results with regard to preoperative arthroscopic and radiographic findings. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2010 Dec 1;26(12):1607-16.
  28. Bonnin M, Chambat P. Current status of valgus angle, tibial head closing wedge osteotomy in media gonarthrosis. Der Orthopade. 2004 Feb;33(2):135-42.
  29. Jenny JY, Tavan A, Jenny G, Kehr P. Long-term survival rate of tibial osteotomies for valgus gonarthrosis. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1998 Jul;84(4):350-7.
  30. Brinkman JM, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, Van Heerwaarden RJ. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. The Journal of bone and joint surgery. British volume. 2008 Dec;90(12):1548-57.
  31. Coventry MB. Osteotomy about the knee for degenerative and rheumatoid arthritis: indications, operative technique, and results. JBJS. 1973 Jan 1;55(1):23-48.
  32. Odenbring S, Tjörnstrand B, Egund N, Hagstedt B, Hovelius L, Lindstrand A, Luxhöj T, Svanström A. Function after tibial osteotomy for medial gonarthrosis below aged 50 years. Acta orthopaedica Scandinavica. 1989 Jan 1;60(5):527-31.
  33. Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat Award: is neutral mechanical alignment normal for all patients?: the concept of constitutional varus. Clinical Orthopaedics and Related Research®. 2012 Jan 1;470(1):45-53.
  34. Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. Journal of orthopaedic research. 1991 Jan;9(1):113-9.
  35. Halder A, Kutzner I, Graichen F, Heinlein B, Beier A, Bergmann G. Influence of limb alignment on mediolateral loading in total knee replacement: in vivo measurements in five patients. JBJS. 2012 Jun 6;94(11):1023-9.
  36. Dugdale TW, Noyes FR, Styer DA. Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clinical orthopaedics and related research. 1992 Jan(274):248-64.
  37. Jung WH, Takeuchi R, Chun CW, Lee JS, Ha JH, Kim JH, Jeong JH. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2014 Jan 1;30(1):72-9.
  38. Kanamiya T, Naito M, Hara M, Yoshimura I. The influences of biomechanical factors on cartilage regeneration after high tibial osteotomy for knees with medial compartment osteoarthritis: clinical and arthroscopic observations. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2002 Sep 1;18(7):725-9.
  39. Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R, Berruto M, Engebretsen L, Filardo G, Angele P. Early osteoarthritis of the knee. Knee Surgery, Sports Traumatology, Arthroscopy. 2016 Jun 1;24(6):1753-62.
  40. Tischer T, Paul J, Pape D, Hirschmann MT, Imhoff AB, Hinterwimmer S, Feucht MJ. The impact of osseous malalignment and realignment procedures in knee ligament surgery: a systematic review of the clinical evidence. Orthopaedic journal of sports medicine. 2017 Mar 24;5(3):2325967117697287.
  41. Kim KI, Seo MC, Song SJ, Bae DK, Kim DH, Lee SH. Change of chondral lesions and predictive factors after medial open[1]wedge high tibial osteotomy with a locked plate system. The American Journal of Sports Medicine. 2017 Jun;45(7):1615-21.
  42. Krych AJ, Hevesi M, Desai VS, Camp CL, Stuart MJ, Saris DB. Learning from failure in cartilage repair surgery: An analysis of the mode of failure of primary procedures in consecutive cases at a tertiary referral center. Orthopaedic journal of sports medicine. 2018 May 9;6(5):2325967118773041.
  43. Giffin JR, Shannon FJ. The role of the high tibial osteotomy in the unstable knee. Sports medicine and arthroscopy review. 2007 Mar 1;15(1):23-31.
  44. Badhe NP, Forster IW. High tibial osteotomy in knee instability: the rationale of treatment and early results. Knee Surgery, Sports Traumatology, Arthroscopy. 2002 Jan 1;10(1):38-43.
  45. Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M, Wickiewicz TL, Pearle AD. Effect of tibial slope on the stability of the anterior cruciate ligament–deficient knee. Knee Surgery, Sports Traumatology, Arthroscopy. 2012 Aug 1;20(8):1626-31.
  46. Lee SH, Lee OS, Teo SH, Lee YS. Change in gait after high tibial osteotomy: Asystematic review and meta-analysis. Gait & posture. 2017 Sep 1;57:57-68.
  47. Marriott KA, Birmingham TB, Giffin RJ, Jones IC. Gait biomechanics pre and post combined high tibial osteotomy and acl reconstruction. Osteoarthritis and Cartilage. 2014 Apr 1;22:S112-3.
  48. Leitch KM, Birmingham TB, Dunning CE, Giffin JR. Medial opening wedge high tibial osteotomy alters knee moments in multiple planes during walking and stair ascent. Gait & posture. 2015 Jul 1;42(2):165-71.
  49. Liu X, Chen Z, Gao Y, Jin Z. High tibial osteotomy: review of techniques and biomechanics. Journal of healthcare engineering. 2019 May 2;2019.
  50. Ekhtiari S, Haldane CE, Simunovic N, Musahl V, Ayeni OR. Return to work and sport following high tibial osteotomy: a systematic review. JBJS. 2016 Sep 21;98(18):1568-77.
  51. Park CH, Bae DK, Kim KI, Lee JW, Song SJ. Serial changes in the joint space width and joint line convergence angle after closed-wedge high tibial osteotomy. American J Sports Med 2017 Dec;45(14):3254-61.
  52. DeMeo PJ, Johnson EM, Chiang PP, Flamm AM, Miller MC. Midterm follow-up of opening-wedge high tibial osteotomy. The American journal of sports medicine. 2010 Oct;38(10):2077- 84.
  53. Amzallag J, Pujol N, Maqdes A, Beaufils P, Judet T, Catonne Y. Patellar height modification after high tibial osteotomy by either medial opening-wedge or lateral closing-wedge osteotomies. Knee Surgery, Sports Traumatology, Arthroscopy. 2013 Jan 1;21(1):255-9.
  54. Bae DK, Song SJ, Kim HJ, Seo JW. Change in limb length after high tibial osteotomy using computer-assisted surgery: a comparative study of closed-and open-wedge osteotomies. Knee Surgery, Sports Traumatology, Arthroscopy. 2013 Jan 1;21(1):120-6.
  55. Hankemeier S, Mommsen P, Krettek C, Jagodzinski M, Brand J, Meyer C, Meller R. Accuracy of high tibial osteotomy: comparison between open-and closed-wedge technique. Knee Surgery, Sports Traumatology, Arthroscopy. 2010 Oct 1;18(10):1328-33.
  56. Ducat A, Sariali E, Lebel B, Mertl P, Hernigou P, Flecher X, Zayni R, Bonnin M, Jalil R, Amzallag J, Rosset P. Posterior tibial slope changes after opening-and closing-wedge high tibial osteotomy: a comparative prospective multicenter study. Orthopaedics & Traumatology: Surgery & Research. 2012 Feb 1;98(1):68-74.
  57. Georgoulis AD, Makris CA, Papageorgiou CD, Moebius UG, Xenakis T, Soucacos PN. Nerve and vessel injuries during high tibial osteotomy combined with distal fibular osteotomy: a clinically relevant anatomic study. Knee Surgery, Sports Traumatology, Arthroscopy. 1999 Sep 1;7(1):15-9.
  58. Lee DC, Byun SJ. High tibial osteotomy. Knee surgery & related research. 2012 Jun;24(2):61.
  59. Robin JG, Neyret P. High tibial osteotomy in knee laxities: concepts review and results. EFORT open reviews. 2016 Jan;1(1):3-11.
  60. Song EK, Seon JK, Park SJ. How to avoid unintended increase of posterior slope in navigation-assisted open-wedge high tibial osteotomy. Orthopedics. 2007 Oct 1;30(10):S127.
  61. Pape D, Lorbach O, Schmitz C, Busch LC, Van Giffen N, Seil R, Kohn DM. Effect of a biplanar osteotomy on primary stability following high tibial osteotomy: a biomechanical cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy. 2010 Feb 1;18(2):204-11.
  62. Krettek C, Miclau T, Gru O, Schandelmaier P, Tscherne H. Intraoperative control of axes, rotation and length in femoral and tibial fractures technical note. Injury. 1998 Dec 1;29:29-39.
  63. Saleh M, Harriman P, Edwards DJ. A radiological method for producing precise limb alignment. The Journal of bone and joint surgery. British volume. 1991 May;73(3):515-6.
  64. FuJISAwA YO, Masuhara KE, Shiomi SH. The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. The Orthopedic clinics of North America. 1979 Jul;10(3):585.
  65. Miniaci A, Ballmer FT, Ballmer PM, Jakob RP. Proximal tibial osteotomy. A new fixation device. Clinical orthopaedics and related research. 1989 Sep(246):250-9.
  66. Noyes FR, Barber SD, Simon R. High tibial osteotomy and ligament reconstruction in varus angulated, anterior cruciate ligament-deficient knees: a two-to seven-year follow-up study. The American journal of sports medicine. 1993 Jan;21(1):2-12.
  67. Jakob RP, Murphy SB. Tibial osteotomy for varus gonarthrosis: indication, planning, and operative technique. Instructional course lectures. 1992;41:87.
  68. Spahn G, Kl inger HM, Harth P, Hofmann GO. Knorpelregeneration nach valgisierender Tibiakopfosteotomie. Ergebnisse einer arthroskopischen Studie. Zeitschrift für Orthopädie und Unfallchirurgie. 2012 Jun;150(03):272-9.
  69. Antonescu DN. Is knee osteotomy still indicated in knee osteoarthritis?. Acta Orthopaedica Belgica. 2000 Dec;66(5):421-32.
  70. Maas S, Diffo Kaze A, Dueck K, Pape D. Static and dynamic differences in fixation stability between a spacer plate and a small stature plate fixator used for high tibial osteotomies: a biomechanical bone composite study. International Scholarly Research Notices. 2013;2013.
  71. Kaze AD, Maas S, Waldmann D, Zilian A, Dueck K, Pape D. Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. Journal of experimental orthopaedics. 2015 Dec 1;2(1):14.
  72. Takeuchi R, Ishikawa H, Kumagai K, Yamaguchi Y, Chiba N, Akamatsu Y, Saito T. Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2012 Jan 1;28(1):85-94.
  73. Perren SM. Optimizing the degree of fixation stability based on the strain theory. Der Orthopade. 2010 Feb;39(2):132-8.
  74. Staubli AE, Jacob HA. Evolution of open-wedge high-tibial osteotomy: experience with a special angular stable device for internal fixation without interposition material. International orthopaedics. 2010 Feb 1;34(2):167-72.
  75. Gao L, Madry H, Chugaev DV, Denti M, Frolov A, Burtsev M, Magnitskaya N, Mukhanov V, Neyret P, Solomin LN, Sorokin E. Advances in modern osteotomies around the knee. Journal of experimental orthopaedics. 2019 Dec 1;6(1):9.
  76. Solomin LN, Shchepkina EA, Korchagin KL, Sabirov FK, Takata M, Tsuchiya H. The new method of long bone multilevel deformities correction using the orthopedic hexapod (preliminary report). Traumatology and Orthopedics of Russia. 2017 Oct 4;23(3):103-9.
  77. Mattei L, Lea S, Nicolaci G, Ferrero G, Marmotti A, Castoldi F. Closing wedge tibial osteotomy: is it an actual procedure nowadays?. planning. 2017;3:6.
  78. Bode G, Ogon P, Pestka J, Zwingmann J, Feucht M, Südkamp N, Niemeyer P. Clinical outcome and return to work following single-stage combined autologous chondrocyte implantation and high tibial osteotomy. International orthopaedics. 2015 Apr 1;39(4):689-96.
  79. Bode G, Schmal H, Pestka JM, Ogon P, Südkamp NP, Niemeyer P. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5. Archives of orthopaedic and trauma surgery. 2013 Jan 1;133(1):43-9.
  80. Sterett WI, Steadman JR. Chondral resurfacing and high tibial osteotomy in the varus knee. The American journal of sports medicine. 2004 Jul;32(5):1243-9.
  81. Trinh TQ, Harris JD, Siston RA, Flanigan DC. Improved outcomes with combined autologous chondrocyte implantation and patellofemoral osteotomy versus isolated autologous chondrocyte implantation. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2013 Mar 1;29(3):566-74.
  82. Waller C, Hayes D, Block JE, London NJ. Unload it: the key to the treatment of knee osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy. 2011 Nov 1;19(11):1823-9.
  83. Parker DA, Beatty KT, Giuffre B, Scholes CJ, Coolican MR. Articular cartilage changes in patients with osteoarthritis after osteotomy. The American journal of sports medicine. 2011 May;39(5):1039-45.
  84. Verdonk PC, Verstraete KL, Almqvist KF, De Cuyper K, Veys EM, Verbruggen G, Verdonk R. Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surgery, Sports Traumatology, Arthroscopy. 2006 Aug 1;14(8):694-706.
  85. Hernigou PH, Medevielle D, Debeyre J, Goutallier D. Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. The Journal of bone and joint surgery. American volume. 1987 Mar;69(3):332.
  86. Jenny JY, Tavan A, Jenny G, Kehr P. Long-term survival rate of tibial osteotomies for valgus gonarthrosis. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1998 Jul;84(4):350-7.
  87. Wang G, Zheng G, Gruetzner PA, Mueller-Alsbach U, von Recum J, Staubli A, Nolte LP. A fluoroscopy-based surgical navigation system for high tibial osteotomy. Technology and Health Care. 2005 Jan 1;13(6):469-83.
  88. Akamatsu Y, Mitsugi N, Mochida Y, Taki N, Kobayashi H, Takeuchi R, Saito T. Navigated opening wedge high tibial osteotomy improves intraoperative correction angle compared with conventional method. Knee Surgery, Sports Traumatology, Arthroscopy. 2012 Mar 1;20(3):586-93.
  89. Picardo NE, Khan W, Johnstone D. Suppl 2: Computer[1]Assisted Navigation in High Tibial Osteotomy: A Systematic Review of the Literature. The Open Orthopaedics Journal. 2012;6:305.
  90. Victor J, Premanathan A. Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study. The bone & joint journal. 2013 Nov;95(11_Supple_A):153-8.
  91. Jones GG, Jaere M, Clarke S, Cobb J. 3D printing and high tibial osteotomy. EFORT open reviews. 2018 May;3(5):254-9.
  92. Henckel J, Richards R, Lozhkin K, Harris S, Baena FR, Barrett AR, Cobb JP. Very low-dose computed tomography for planning and outcome measurement in knee replacement: the imperial knee protocol. The Journal of bone and joint surgery. British volume. 2006 Nov;88(11):1513-8.
  93. Woodacre T, Ricketts M, Evans JT, Pavlou G, Schranz P, Hockings M, Toms A. Complications associated with opening wedge high tibial osteotomy—A review of the literature and of 15 years of experience. The Knee. 2016 Mar 1;23(2):276-82.
  94. Valkering KP, van den Bekerom MP, Kappelhoff FM, Albers GR. Complications after tomofix medial opening wedge high tibial osteotomy. Journal of Knee Surgery. 2009 Jul 1;22(3):218.
  95. Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature. International Orthopaedics 2010;34(2):155-60.
  96. Hui C, Salmon LJ, Kok A, Williams HA, Hockers N, van der Tempel WM, Chana R, Pinczewski LA. Long-term survival of high tibial osteotomy for medial compartment osteoarthritis of the knee. The American journal of sports medicine. 2011 Jan;39(1):64-70.
  97. Howells NR, Salmon L, Waller A, Scanelli J, Pinczewski LA. The outcome at ten years of lateral closing-wedge high tibial osteotomy: determinants of survival and functional outcome. The bone & joint journal. 2014 Nov;96(11):1491-7.
  98. Niinimäki TT, Eskelinen A, Mann BS, Junnila M, Ohtonen P, Leppilahti J. Survivorship of high tibial osteotomy in the treatment of osteoarthritis of the knee: Finnish registry-based study of 3195 knees. The Journal of bone and joint surgery. British volume. 2012 Nov;94(11):1517-21.
  99. Darden CN, Katsman A, Alaia MJ, Strauss EJ, Jazrawi LM. Short-Term Clinical Outcomes of High Tibial Osteotomy with the iBalance HTO System. Bulletin of the NYU Hospital for Joint Diseases. 2019 Oct 1;77(4):256-62.

How to Cite this article: Mhaskar VA, Jain Y, Maheshwari J. Current Concepts in High Tibial Osteotomy. Journal of Clinical Orthopaedics Jan-Jun 2021;6(1):24-31.

 (Abstract    Full Text HTML)   (Download PDF)


A Malunited Fibula with raised Lateral Malleolus treated Surgically by Fibular Osteotomy and Plating

Vol 3 | Issue 2 |  July-Dec 2018 | Page 54-55 | HR Jhunjhunwala.


Authors: HR Jhunjhunwala [1].

[1] Department of Orthopaedics, Bombay Hospital Postgraduate Institute of Medical Sciences, Marine Lines, Mumbai, India.

Address of Correspondence
Dr. HR Jhunjhunwala,
Department of Orthopaedics, Bombay Hospital Postgraduate Institute of Medical Sciences, Marine Lines, Mumbai, India.
Email: drhrj2@gmail.com


Abstract

Isolated fibular fractures are often considered innocuous and treated conservatively. They may malunited and predispose the ankle to severe twisting injuries. We present one such case where the patient presented with twisting injury to the ankle. Radiograph revealed a malunited fibula which was high riding. To prevent future such episodes, fibula was pulled down by doing an osteotomy and was stabilised with a plate. The union was uneventful and at final follow up pf two years the patient is symptom free
Keywords: malunited fibula, Osteotomy


References

1. Sakaki MH, Matsumura BAR, Dotta TDAG, et al. Epidemiologic study of ankle fractures in a tertiary hospital. Acta Orto Bras. 2014;22(2):90-93.
2. Thur CK, Edgren G, Jansson KÅ, et al. Epidemiology of adult ankle fractures in Sweden between 1987 and 2004: a population-based study of 91,410 Swedish inpatients. Acta Orthop. 2012;83(3):276-281.
3. McPhail SM, Dunstan J, Canning J, et al. Life impact of ankle fractures: Qualitative analysis of patient and clinician experiences. BMC Musculoskeletal Disorders. 2012;13:224.
4. Hosea TM, Carey CC, Harrer MF. The gender issue: Epidemiology of ankle injuries in athletes who participate in basketball. Clin Orthop Relat Res. 2000;(372):45-49.
5. Helfet DL, Haas NP, Schatzker J, et al. AO Philosophy and Principles of Fracture Management-Its Evolution and Evaluation. J Bone Joint Surg Am, 2003;85(6):1156-1160 .
6. Van Wensen RJA, van den Bekerom MPJ, Marti RK, et al. Reconstructive osteotomy of fibular malunion: review of the literature. Strategies in Trauma and Limb Reconstruction. 2011;6(2):51-57.
7. Zhenhua F, Waizy H, Ming X, et al. Lateral malleolus hook plate for comminuted Weber A and B fractures: A retrospective study. Indian J Orthop. 2013;47(4): 364–369.
8. Buscharino B, MorettiRG, Hungria JOS, et al. Biomechanical Study: Resistance Comparison of Posterior Antiglide Plate and Lateral Plate on Synthetic Bone Models Simulating Danis-Weber B Malleolar Fractures. Rev Bras Ortop. 2013;48(3):221-227.


How to Cite this article: Jhunjhunwala HR. A Malunited Fibula with raised Lateral Malleolus treated surgically by Fibular Osteotomy and Plating. Journal of Clinical Orthopaedics July-Dec 2018; 3(2):54-55.

(Abstract    Full Text HTML)      (Download PDF)