Management of Periprosthetic Femoral Fractures following Total Hip Replacement: A Case Series

Lokesh Kumar Yogi¹, Vijay Chandrakant Shinde¹, Moti Janardhan Naik¹, Vikash Kumar²

Abstract

Background: Periprosthetic femoral fractures following total hip arthroplasty (THA) are not very uncommon. At present the Vancouver classification provides management algorithm for deciding treatment options but treatment options may vary between surgeons, where as in this study most patients managed were according to Vancouver classification management algorithm. The most common treatment modality for treating periprosthetic femoral fractures around a well-fixed stem is with osteosynthesis, but fracture with loose stem requires revision arthroplasty and fracture with poor bone requires bone graft augmentation.

Methods: We reviewed 21 consecutive cases with periprosthetic femoral fractures in association with THA between June 2018 and December 2020. Locking and non locking compression plates, wires, cables system were used for osteosynthesis. Most of fractures were managed according to Vancouver classification management algorithm but modified in some cases according to the surgeon’s skills and judgment.

Results: According to Vancouver classification, two patients had AL fractures, two patients had AG fractures, twelve Patients had B1, five patients had B2, two patients had B3 and one patient had type C fracture. Of these two cases were treated by conservatively, sixteen cases were treated by osteosynthesis, three cases by revision arthroplasty.

Conclusion: The careful analysis of implant stability and fracture patterns is crucial for the optimal treatment of Periprosthetic femoral fractures. Expert Surgeon’s skills are needed to deal with periprosthetic femoral fractures.

Keywords: Locking compression plate, periprosthetic fractures, total hip arthroplasty, Vancouver classification.

Introduction

The incidence of periprosthetic femoral fractures in association with total hip arthroplasty (THA) is increasing as they continue to rise in direct proportion to the number of THA procedures performed, the aging population and complications such as osteolysis and aseptic loosening [1]. As cementless THA procedures are performed in advanced age patients, who have osteoporotic bone, intraoperative fracture easily, occur when strong compression is applied to achieve initial stability. Whereas periprosthetic femoral fractures are also commonly seen in patients who underwent cementless hip arthroplasty, despite osteoporotic bone, after falling down, compared to cemented THA [2]. Periprosthetic femoral fractures following THA are mostly associated with trauma; however, they may also be caused by local and systemic factors including advanced age, osteoporosis, systemic steroids, prosthetic instability/loosening of prosthesis, and osteolysis [3, 4].

Nowadays the most common classification using for femoral periprosthetic femoral fractures is Vancouver classification [5] (Fig. 1). An algorithmic treatment approach for femoral periprosthetic fractures according to the Vancouver classification system is currently widely recommended [6]. Although the Vancouver classification has been tested for validity and reliability with results showing interobserver reliability of substantial agreement [7].

An algorithm for better identifying loose stems in patients suffering from a periprosthetic fracture after THA (Fig. 2).

The operative modality for periprosthetic femoral fractures range from minimally invasive procedures to revision arthroplasty. There are various procedures such as cerclage, cables, locking and non locking plates, bone grafting. The fixation of periprosthetic
femoral fracture depends on whether the prosthesis is still well fixed or has loosened or broken through the fracture [8,9].

Materials and Methods
This study was performed following an approval from the institutional review board and we reviewed 21 consecutive cases with periprosthetic femoral fractures in association with THA between June 2017 and December 2019. Periprosthetic femoral fractures were classified according to the Vancouver system [8] and the mean onset period of a periprosthetic femoral fracture following THA was 9 years 3 months (range, 3 years-30 years). The mean age of patients at the time of fracture was 65.33 years (range, 42–82 years). Twelve patients were male and nine were female. The average follow-up period was 12 months (range, 12–24 months). The type of femoral stem used was cemented in five cases and uncemented in sixteen cases. As showing in Table 1, fractures were caused by a fall or minor trauma (n=16) or non-traumatic event (n=5). Fractures classified by Vancouver classification

Results
According to Vancouver Classification two patients had AL fractures, one patient had AG fracture, ten patients had B1, five patients had B2, two patients had B3 and one patient had C fractures. Of these two cases were treated by conservatively, sixteen cases were treated by osteosynthesis, three cases by revision arthroplasty (in which one patient was treated with Revision Arthroplasty with Cerclage Wiring). In osteosynthesis a LCP system was used for nine patients, LCP with Cable used for four patients and Cerclage Wiring only for two patient and Tension Band Wire for one patient. Bone grafting was used in three patient those who had bone loss.

Figure 1: Vancouver classification for periprosthetic femoral fracture.

Figure 2: An algorithm for better identifying loose stems or stable stem in patients suffering from a periprosthetic fracture after total hip arthroplasty.

Figure 3: Preoperative anterior-posterior (AP) radiographs of the left hip (A) showing a periprosthetic femoral fracture was judged to be Vancouver type AL. Postoperative AP radiographs of the hip (B and C) views demonstrating fixation with Cerclage Wiring.

Figure 4: Preoperative AP radiographs of the right hip (A and B), showing a periprosthetic femoral fracture was judged to be Vancouver type B2. Postoperative AP radiographs of the hip (B and C) view demonstrating fixation with Revision Arthroplasty + Cerclage Wiring.

Figure 5: Preoperative AP radiographs of the right hip (A and B), showing a periprosthetic femoral fracture was judged to be Vancouver type B3. Postoperative AP radiographs of the hip (B and C) views demonstrating fracture fixation with distal femoral locking compression plate.

Figure 6: Preoperative anterior-posterior (AP) radiographs of the left hip (A) showing a periprosthetic femoral fracture was judged to be Vancouver type C. Postoperative AP radiographs of the hip (B) views demonstrating fixation with locking compression plate.

Figure 7: Preoperative anterior-posterior (AP) radiographs of the right hip (A and B), showing a periprosthetic femoral fracture was judged to be Vancouver type B2. Postoperative AP radiographs of the hip (B and C) views demonstrating fracture fixation with distal femoral locking compression plate.
Discussion

The incidence of femoral periprosthetic fractures following THR varies according to the surgeons, but the prevalence of THR has been on the increase in recent years, along with an expanded range of indications for surgery and growing number of elderly [10]. In particular, surgical management needs to be considered carefully in older patients with osteoporosis, who are at high risk of fractures, since treatments that result in fractures are not satisfactory [11, 12]. The management of fractures along the femoral stem with loosening and poor bone stock depends on both the severity and distribution of bone loss. Options include revision with distally fixed stems, proximal femoral replacement with allograft prosthesis composite, requires revision arthroplasty and fracture with poor bone require bone graft augmentation [13, 14].

A few aspects may be considered as limitations of the proposed Vancouver classification management algorithm. Although the algorithm serves to identify loose stems, it is not a sole guide for the best type treatment option, i.e. patient factors such as sex, age and health conditions have to be considered too [15].

Table 1: Patient characteristics and treatment information

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex/age (years)</th>
<th>Primary THA</th>
<th>Vancouver Type</th>
<th>Treatment method</th>
<th>Bone graft used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M/42</td>
<td>Uncemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>M/46</td>
<td>Uncemented</td>
<td>B₂</td>
<td>LCP+Cable</td>
<td>Bone graft</td>
</tr>
<tr>
<td>3</td>
<td>F/49</td>
<td>Uncemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>M/51</td>
<td>Uncemented</td>
<td>B₁</td>
<td>Cerclage wiring</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>M/54</td>
<td>Uncemented</td>
<td>B₃</td>
<td>LCP+Cable</td>
<td>Bone graft</td>
</tr>
<tr>
<td>6</td>
<td>M/55</td>
<td>Uncemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>M/60</td>
<td>Uncemented</td>
<td>A₄</td>
<td>Cerclage wiring</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F/62</td>
<td>Uncemented</td>
<td>B₂</td>
<td>LCP+Cable</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F/62</td>
<td>Uncemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>M/64</td>
<td>Uncemented</td>
<td>B₃</td>
<td>Revision arthroplasty</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F/67</td>
<td>Uncemented</td>
<td>B₂</td>
<td>Revision arthroplasty+Cerclage wiring</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F/71</td>
<td>Uncemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>M/71</td>
<td>Uncemented</td>
<td>B₂</td>
<td>LCP+Cable</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>M/72</td>
<td>Cemented</td>
<td>A₄</td>
<td>Conservative</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>F/76</td>
<td>Uncemented</td>
<td>C</td>
<td>LCP</td>
<td>Bone graft</td>
</tr>
<tr>
<td>16</td>
<td>M/76</td>
<td>Cemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>F/77</td>
<td>Cemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>M/79</td>
<td>Uncemented</td>
<td>B₁</td>
<td>LCP</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>F/80</td>
<td>Cemented</td>
<td>A₄</td>
<td>Tension band wire</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>F/80</td>
<td>Uncemented</td>
<td>B₂</td>
<td>Revision arthroplasty</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>M/82</td>
<td>Cemented</td>
<td>B₁</td>
<td>Conservative</td>
<td>-</td>
</tr>
</tbody>
</table>

THA: Total hip arthroplasty, LCP: Locking compression plate
classification management algorithm [19,20] (Figs. 3-6).

Conclusion
The careful analysis of stem stability and fracture patterns is crucial for the optimal treatment of periprosthetic femoral fractures. The goals of treatment are fracture reduction and healing, while allowing for early mobilization of both the patient and the affected joint. Ultimately, a surgeon's skills are needed to deal with periprosthetic femoral fractures.

Declarations of patient consent: The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient has given his consent for his images and other clinical information to be reported in the Journal. The patient understands that his name and initials will not be published, and due efforts will be made to conceal his identity, but anonymity cannot be guaranteed.

Conflict of Interest: NIL; **Source of Support:** NIL

References