Moving toward Regional Anaesthesia for Spine Surgery – Need of the Hour

Journal of Clinical Orthopaedics | Vol 7 | Issue 2 |  Jul-Dec 2022 | page: 38-42 | Samidha Waradkar , Aaliya Mehmood , Saijyot Raut , Vishal Kundnani

DOI: 10.13107/jcorth.2022.v07i02.527

Author: Samidha Waradkar [1], Aaliya Mehmood [2], Saijyot Raut [3], Vishal Kundnani [4]

[1] Consultant Anesthesiology, at Lilavati Hospital and Research Centre, Mumbai, India,
[2] Senior Resident Anesthesiology at Lilavati Hospital and Research Centre, Mumbai, India,
[3] MS Ortho, Consultant Spine Surgeon at Spine Centre, Andheri and SL Raheja Hospital, Mahim, Mumbai, India,
[4] MS Ortho, Consultant Spine Surgeon at Lilavati Hospital and Research Centre, Mumbai, India.

Address of Correspondence
Dr. Aaliya Mehmood,
Flat 701, A-8, Al-Quba CHS, Millat Nagar, Andheri West, Mumbai 400053, India.


Background: In the last few decades, many studies have been conducted on comparison between general anaesthesia (GA) versus spinal anaesthesia (SA) for lumbar spine surgeries and each have reported discrepancies between the two methods of induction with equivalent pros and cons; ultimately failing to state a final conclusive method. With the ongoing COVID pandemic, and the fear of aerosol generation associated with GA; our focus has shifted on regional anesthesia completely, as it is been proven safer and more hassle-free to conduct during these challenging times.

Materials and Methods: A similar case study was conducted with 178 patients posted for lumbar spine procedures under the same surgeon. Wherein, 86 received GA and 92 SA. Appropriate statistical analysis was applied to identify differences in blood loss, operative time, time from entering the operating room (OR) until incision, time from bandage placement to exiting the OR, total anesthesia time, PACU time, and total hospital stay. Secondary outcomes of interest included incidence of postoperative spinal hematoma and death, incidence of paraparesis, paraplegia, paraesthesia, post-Dural puncture headache, signs of meningism, urinary retention, and other perioperative complications among the SA patients.

Results: SA was associated with significantly lower operative time, blood loss, total anaesthesia time, time from entering the OR until incision, time from bandage placement until exiting the OR. SA was also associated with shorter stay in the PACU, and overall lesser total duration of hospital stay. None of the 92 patients in SA group needed conversion to GA or had an episode of high/complete sympathetic blockade. No incidences of paraparesis or paraplegia, or episodes of persistent post-operative paraesthesia or weakness, Bagai (vasovagal) syncope, PONV, post-op meningism, post-dural puncture headache, spinal hematoma, intraoperative dural Cerebrospinal Fluid leak or post-op fistula, were noted. There were two incidences of failed spinal which were easily managed with a lower dose repeat SA. Overall better post-op analgesia and higher patient and surgeon satisfaction compared to GA was observed.

Conclusion: SA is effective for use in patients undergoing elective lumbar spine surgeries and very efficient alternative technique to GA. SA offers efficient OR functioning with decreasing overall operation theatre time and shown to be the more convenient anesthetic choice in the perioperative setting.

Keywords: Spinal Anaesthesia, Regional Anaesthesia, Covid-19, Spine Surgery, Lumbar Discectomy, Fast Track Anaesthesia, Aerosol Generation


1. Demirel CB, Kalayci M, Ozkocak I, Altunkaya H, Ozer Y, Acikgoz B. A prospective randomized study comparing perioperative outcome variables after epidural or general anesthesia for lumbar disc surgery. J Neurosurg Anesthesiol. 2003;15:185–192.
2. De Rojas JO, Syre P, Welch WC. Regional anesthesia versus general anesthesia for surgery on the lumbar spine: a review of the modern literature. Clin Neurol Neurosurg. 2014;119:39–43.
3. Pflug AE, Halter JB. Effect of spinal anesthesia on adrenergic tone and the neuroendocrine responses to surgical stress in humans. Anesthesiology. 1981;55:120–126
4. Rodgers A, Walker N, Schug S, McKee A, Kehlet H, van Zundert A, et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ. 2000;321(7275):1493.
5. McLain RF, Bell GR, Kalfas I, Tetzlaff JE, Yoon HJ. Complications associated with lumbar laminectomy: a comparison of spinal versus general anesthesia. Spine (Phila Pa 1976). 2004;29:2542–2547.
6. McLain RF, Tetzlaff JE, Bell GR, Uwe-Lewandrowski K, Yoon HJ, Rana M. Microdiscectomy: spinal anesthesia offers optimal results in general patient population. J Surg Orthop Adv. 2007;16:5–11.
7. Available at:
8. Scott NB, Kehlet H. Regional anaesthesia and surgical morbidity. Br J Surg. 1988;75(4):299–304.
9. Attari MA, Mirhosseini SA, Honarmand A, Safavi MR. Spinal anesthesia versus general anesthesia for elective lumbar spine surgery: a randomized clinical trial. J Res Med Sci. 2011;16:524–529.
10. Brown MJ. Anesthesia for elective spine surgery in adults. 2015. Available from: Accessed July 26, 2017.
11. Modig J, Karlstrom G. Intra- and post-operative blood loss and haemodynamics in total hip replacement when performed under lumbar epidural versus general anaesthesia. Eur J Anaesthesiol. 1987;4(5):345–55.
12. Urwin SC, Parker MJ, Griffiths R. General versus regional anaesthesia for hip fracture surgery: a meta-analysis of randomized trials. Br J Anaesth. 2000;84(4):450–5.
13. Indelli PF, Grant SA, Nielsen K, Vail TP. Regional anesthesia in hip surgery. Clin Orthop Relat Res. 2005;441:250–5.
14. Sakura S. Epidural anesthesia and spinal anesthesia in the elderly. Masui. 2007;56(2):130–8. [In Japanese].
15. Kao FC, Tsai TT, Chen LH, et al. Symptomatic epidural hematoma after lumbar decompression surgery. Eur Spine
J. 2015;24:348–357.


How to Cite this article: Waradkar S, Mehmood A, Raut S, Kundnani V. Moving toward Regional
Anesthesia for Spine Surgery – Need of the Hour. Journal of Clinical Orthopaedics Jul-Dec 2022;7(2):38-42.

 (Abstract    Full Text HTML)   (Download PDF)