Three dimensional (3D) printing in Orthopaedics: Scope of application and future perspectives

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 41-44 | Shubhranshu S Mohanty, Tushar Kadam, Sushant Srivastava

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.592


Authors: Shubhranshu S Mohanty [1], Tushar Kadam [1], Sushant Srivastava [2]

[1] Department of Orthopaedics, Seth GS Medical College and KEM Hospital, Parel, Mumbai-12, Hon Consultant, Jaslok, Nanavati & Shushrusha Hospitals, Mumbai, India.
[2] Department of Orthopaedics, Mata Gujri Memorial Medical College, Kishanganj, Bihar, India.

Address of Correspondence
Dr. Shubhranshu S Mohanty,
Dept of Orthopaedics, #608, 6th Floor, MS Building, Seth GS Medical College & King Edward Memorial Hospital,
Parel, Mumbai-400012, India.

Email: drssmohanty@hotmail.com


Abstract

Three dimensional (3D) printing also known as additive manufacturing has the potential to change the paradigm of Orthopaedic practice. Modern times have witnessed exponential growth in 3D-printing technology as well as its uses. A wide spectrum of printers are now available, ranging from the desktop printer to high end manufacturing units. The ability to use a plethora of materials and create almost limitless geometric shapes with varying surface topography makes this method of production highly appealing. Certain inherent advantages include easy customizability, small production runs, less wastage of material, smaller footprint. Challenges such as lack of data, absence of established government regulations and cost considerations remain, but one can expect these to be overcome as the economy of scale plays out and the medical fraternity becomes more accommodating of the new technology.
Keywords: Three dimensional printing, Recent Advances, Arthroplasty, Spine, Tumor Implants


References

1. Beredjiklian PK, Wang M, Lutsky K, Vaccaro A, Rivlin M. Three- Dimensional Printing in Orthopaedic Surgery: Technology and Clinical Applications. J Bone Joint Surg Am. 2020 May 20;102(10):909-919. doi: 10.2106/JBJS.19.00877. PMID: 32079880.
2. Mumith A, Thomas M, Shah Z, Coathup M, Blunn G. Additive manufacturing: current concepts, future trends. Bone Joint J. 2018 Apr 1;100-B(4):455-460. doi: 10.1302/0301- 620X.100B4.BJJ-2017-0662.R2. PMID: 29629583.
3. Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Threedimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. J Am Acad Orthop Surg Glob Res Rev. 2021 Apr 20;5(4):e20.00230-11. doi: 10.5435/JAAOSGlobal-D-20-00230. PMID: 33877073; PMCID: PMC8059996.
4. Aimar A, Palermo A, Innocenti B. The Role of 3D Printing in Medical Applications: A State of the Art. J Healthc Eng. 2019 Mar 21;2019:5340616. doi: 10.1155/2019/5340616. PMID: 31019667; PMCID: PMC6451800.
5. Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: A technological marvel. J Clin Orthop Trauma. 2018 Jul-Sep;9(3):260-268. doi: 10.1016/j.jcot.2018.07.022. Epub 2018 Aug 3. PMID: 30202159; PMCID: PMC6128305.
6. Bizzotto N, Sandri A, Regis D, Romani D, Tami I, Magnan B. Three-Dimensional Printing of Bone Fractures: A New Tangible Realistic Way for Preoperative Planning and Education. Surg I n n o v . 2 0 1 5 O c t ; 2 2 ( 5 ) : 5 4 8 – 5 1 . d o i : 10.1177/1553350614547773. Epub 2015 Feb 2. PMID: 25646008.
7. Shen Z, Yao Y, Xie Y, Guo C, Shang X, Dong X, Li Y, Pan Z, Chen S, Xiong G, Wang FY, Pan H. The process of 3D printed skull models for anatomy education. Comput Assist Surg ( A b i n g d o n ) . 2 0 1 9 O c t ; 2 4 ( s u p 1 ) : 1 2 1 – 1 3 0 . d o i : 10.1080/24699322.2018.1560101. Epub 2019 Apr 23. PMID: 31012745.
8. Tanaka KS, Lightdale-Miric N. Advances in 3D-Printed Pediatric Prostheses for Upper Extremity Differences. J Bone Joint Surg Am. 2016 Aug 3;98(15):1320-6. doi: 10.2106/JBJS.15.01212. PMID: 27489324.
9. Chen YJ, Lin H, Zhang X, Huang W, Shi L, Wang D. Application of 3D-printed and patient-specific cast for the treatment of distal radius fractures: initial experience. 3D Print Med. 2017;3(1):11. doi: 10.1186/s41205-017-0019-y. Epub 2017 Nov 9. PMID: 29782603; PMCID: PMC5954789.
10. Schweizer A, Fürnstahl P, Nagy L. Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg Am. 2013 Dec;38(12):2339-47. doi: 10.1016/j.jhsa.2013.09.023. Epub 2013 Nov 1. PMID: 24189159.
11. Kwon OR, Kang KT, Son J, Suh DS, Heo DB, Koh YG. Patientspecific instrumentation development in TKA: 1st and 2nd generation designs in comparison with conventional instrumentation. Arch Orthop Trauma Surg. 2017 Jan;137(1):111-118. doi: 10.1007/s00402-016-2618-2. Epub 2016 Dec 22. PMID: 28005167.
12. Thienpont E, Schwab PE, Fennema P. Efficacy of Patient- Specific Instruments in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J Bone Joint Surg Am. 2017 Mar 15;99(6):521-530. doi: 10.2106/JBJS.16.00496. PMID: 28291186.
13. Wan L, Wu G, Cao P, Li K, Li J, Zhang S. Curative effect and prognosis of 3D printing titanium alloy trabecular cup and pad in revision of acetabular defect of hip joint. Exp Ther Med. 2019 Jul;18(1):659-663. doi: 10.3892/etm.2019.7621. Epub 2019 May 28. PMID: 31281446; PMCID: PMC6580106.
14. Taunton MJ, Fehring TK, Edwards P, Bernasek T, Holt GE, Christie MJ. Pelvic discontinuity treated with custom triflange component: a reliable option. Clin Orthop Relat Res. 2012 Feb;470(2):428-34. doi: 10.1007/s11999-011-2126-1. PMID: 21997785; PMCID: PMC3254733.
15. Berasi CC 4th, Berend KR, Adams JB, Ruh EL, Lombardi AV Jr. Are custom triflange acetabular components effective for reconstruction of catastrophic bone loss? Clin Orthop Relat Res. 2015 Feb;473(2):528-35. doi: 10.1007/s11999-014-3969- z. PMID: 25315276; PMCID: PMC4294939.
16. Mokawem M, Katzouraki G, Harman CL, Lee R. Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft. J  Clin Neuro sci. 2019 Oct; 68:134-139. doi: 10.1016/j.jocn.2019.07.011. Epub 2019 Jul 24. PMID: 31351704.
17. Burnard JL, Parr WCH, Choy WJ, Walsh WR, Mobbs RJ. 3Dprinted spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-theshelf devices. Eur Spine J. 2020 Jun;29(6):1248-1260. doi: 10.1007/s00586-019-06236-2. Epub 2019 Dec 3. Erratum in: Eur Spine J. 2020 May 26;: PMID: 31797140.
18. Murr LE, Gaytan SM, Medina F, Lopez H, Martinez E, Machado BI, Hernandez DH, Martinez L, Lopez MI, Wicker RB, Bracke J. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans AMath Phys Eng Sci. 2010 Apr28;368(1917):1999-2032. doi: 10.1098/rsta.2010.0010. PMID: 20308113.
19. Vaezi M, Black C, Gibbs DM, Oreffo RO, Brady M, Moshrefi- Torbati M, Yang S. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming. Molecules. 2016 May 26;21(6):687. doi: 10.3390/molecules21060687. PMID: 27240326; PMCID: PMC6273399.

20. Custom Device Exemption: Guidance for Industry and Food and Drug Administration Staff. White Oak, MD, FDA, 2014
21. Liang H, Ji T, Zhang Y, Wang Y, Guo W. Reconstruction with 3Dprinted pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017 Feb;99-B(2):267-275. doi: 10.1302/0301-620X.99B2.BJJ-2016-0654.R1. PMID: 28148672.
22. Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, Atala A. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication. 2015 Jun 17;7(3):035003. doi: 10.1088/1758-5090/7/3/035003. PMID: 26081669.
23. Javaid M, Haleem A. Significant advancements of 4D printing in the field of orthopaedics. J Clin Orthop Trauma. 2020 Jul;11(Suppl 4):S485-S490. doi: 10.1016/j.jcot.2020.04.021. Epub 2020 Apr 25. PMID: 32774016; PMCID: PMC7394805.

How to Cite this article: Mohanty SS, Kadam T, Srivastava S. Three dimensional (3D) printing in Orthopaedics: Scope of application and future perspectives. Journal of Clinical Orthopaedics July-December 2023;8(2):41-44.

 (Abstract Text HTML)   (Download PDF)