Current Strategy of Management of Distal Radius Fractures in Geriatric Populations

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 72-74 | Parag B Lad

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.606


Authors: Parag B Lad [1, 2]

[1] Department of Hand & Reconstructive Microsurgery, Pinnacle Orthocentre, Thane, Maharashtra, India,
[2] Department of Orthopaedics, Jupiter Hospital, Thane, Maharashtra, India.

Address of Correspondence
Dr. Parag B Lad,
Pinnacle Orthocentre, 1st floor, Blue Nile, Almeda Road, Thane, Maharashtra, India India, Jupiter Hospital.
E-mail: orthodoc_p@yahoo.com


Abstract

The distal radius fractures in geriatric population is one of common emergency admission in hospitals. In view of increasing life expectancy, requirement of continuation of work for having independent life, expectation of better outcome in active elderly population is changed. Non-operatively treated undisplaced and extra-articular fractures give good functional outcome. Intra-articular fractures or grossly displaced fractures in active geriatric patients are treated by open reduction and volar locking plate osteosynthesis. This article described factors to consider for treatment, methodology of treatment for various fracture patterns depending upon physical fitness of patient and radiological parameters.
Keywords: distal radius, geriatric, management


References

1. Fader L, Blackburn E. What is the evidence in treating distal radius fractures in the geriatric population? Hand Clin 2021;37:229-37.
2. Nellans KW, Kowalski E, Chung KC. The epidemiology of distal radius fractures. Hand Clin 2012;28:113-25.
3. Lafontaine M, Hardy D, Delince P. Stability assessment of distal radius fractures. Injury 1989;20:208-10.
4. Mauck BM, Swigler CW. Evidence-based review of distal radius fractures. Orthop Clin North Am 2018;49:211-22.
5. Young BT, Rayan GM. Outcome following nonoperative treatment of displaced distal radius fractures in low-demand patients older than 60 years. J Hand Surg Am 2000;25:19-28.
6. Anzarut A, Johnson JA, Rowe BH, Lambert RG, Blitz S, Majumdar SR. Radiologic and patient-reported functional outcomes in an elderly cohort with conservatively treated distal radius fractures. J Hand Surg Am 2004;29:1121-7.
7. Jaremko JL, Lambert RG, Rowe BH, Johnson JA, Majumdar SR. Do radiographic indices of distal radius fracture reduction predict outcomes in older adults receiving conservative treatment? Clin Radiol 2007;62:65-72.
8. Arora R, Gabl M, Erhart S, Schmidle G, Dallapozza C, Lutz M. Aspects of current management of distal radius fractures in the elderly individuals. Geriatr Orthop Surg Rehabil 2011;2:187-94.
9. Chung KC, Shauver MJ, Yin H, Kim HM, Baser O, Birkmeyer JD. Variations in the use of internal fixation for distal radial fracture in the United States medicare population. J Bone Joint Surg Am 2011;93:2154-62.
10. Walsh A, Merchan N, Bernstein DN, Ingalls B, Harper CM, Rozental TD. Predictors of management of distal radius fractures in patients aged >65 years. Hand (N Y) 2022;17:25S-30.
11. Tulipan JE, Lechtig A, Rozental TD, Harper CM. “Age is just a number”: Distal radius fractures in patients over 75. Hand (N Y) 2022;17:128-33.
12. Cooper AM, Wood TR, Scholten Ii DJ, Carroll EA. Nonsurgical management of distal radius fractures in the elderly: Approaches, risks and limitations. Orthop Res Rev 2022;14:287-92.
13. Kim KH, Duell B, Munnangi S, Long M, Morrison E. Radiographic predictors of delayed carpal tunnel syndrome after distal radius fracture in the elderly. Hand (N Y) 2022;17:652-8.
14. Gutiérrez-Espinoza H, Araya-Quintanilla F, Olguín-Huerta C, Gutiérrez-Monclus R, Valenzuela-Fuenzalida J, Román-Veas J, et al. Effectiveness of surgical versus conservative treatment of distal radius fractures in elderly patients: A systematic review and meta-analysis. Orthop Traumatol Surg Res 2022;108:103323.
15. Olech J, Kopczyński B, Tomczyk Ł, Konieczny G, Kazubski K, Morasiewicz P. The functional and radiographic outcomes following distal radius fracture treatment in a cast for 4 and 6 weeks in the elderly: A randomized trial. Adv Clin Exp Med 2022;31:701-6.

How to Cite this article: Lad PB. Current Strategy of Management of Distal Radius Fractures in Geriatric Populations. Journal of Clinical Orthopaedics 2023;8(2):72-74.

(Abstract Text HTML)  (Download PDF)


Delayed Onset Iatrogenic Femur fracture in a Child Primarily treated with Cerclage Wires: Unrecorded Complications of an Unconventional Treatment Method

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 91-93 | Amol Gharote, N S Laud, Bhavika Mehta, Ashok Shyam

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.616


Authors: Amol Gharote [1], N S Laud [2], Bhavika Mehta [3], Ashok Shyam [3]

[1] Gharote Clinic, Thane Maharashtra, India.
[2] Laud Clinic, Dadar, Mumbai, Maharashtra, India.
[3] Sancheti Institute for Orthopaedics & Rehabilitation, Pune, Maharashtra, India.

Address of Correspondence
Dr. Bhavika Mehta
Sancheti Institute for Orthopaedics & Rehabilitation, Pune, Maharashtra, India..
E-mail: mehtabolismforyou@gmail.com


Abstract

Paediatric femur shaft fractures are common bony injuries in children. Although there are set protocol for these fractures, sometimes a deviation from standard methods may lead to unpredicted consequences. We report a case of femoral shaft fracture in a 8 years old boy which was primarily treated with 3 cerclage wires. The fracture healed over next few months but the child presented with refracture at the same site 11 months post first surgery. There was vascular compromise at the cerclage site which caused the fracture. This was treated with plate fixation and fracture finally healed. In this case report we highlight how not following the basic principles of treatment and management can lead to further complications. We also bring to light a previously unreported complication of one such unfavoured and rather unconventional method of fixation.
Keywords: Pediatric Femur Fracture, Cerclage, Nonunion, iatrogenic


References

  1. Rockwood and Wilkins’ Fracture in Children, 9th Edition (2020) Wolters Kluwer, China (Chapter 24-Page 1458).
  2. Duffy S, Gelfer Y, Trompeter A, Clarke A, Monsell F. The clinical features, management options and complications of paediatric femoral fractures. Eur J Orthop Surg Traumatol. 2021Jul;31(5):883-892.
  3. Liau GZQ, Lin HY, Wang Y, Nistala KRY, Cheong CK, Hui JHP. Pediatric Femoral Shaft Fracture: An Age-Based Treatment Algorithm. Indian J Orthop. 2020 Oct 10;55(1):55-67.
  4. P. NIEMEYER and N. P. SÜDKAMP, “Principles and Clinical Application of the Locking Compression Plate (LCP),” ACTA CHIRURGIAE ORTHOPAEDICAE ET TRAUMATOLOGIAE ČECHOSL., p. 221–228, 2006.
  5. Wallace ME, Hoffman EB. Remodelling of angular deformity after femoral shaft fractures in children. J Bone Joint Surg Br. 1992Sep;74(5):765-9.
  6. John R, Sharma S, Raj GN, Singh J, C V, Rhh A, Khurana A. Current Concepts in Paediatric Femoral Shaft Fractures. Open Orthop J. 2017 Apr 28;11:353-368.
  7. G. Harasen, “Orthopedic hardware and equipment for the beginner: Part 1. Pins and wires,” Orthopedics Orthopédie, vol. 52, no. -, pp. 1025-1026, 2011.
  8. M. van Steijn and J. Verhaar, “Osteonecrosis caused by percutaneous cerclage wiring of a tibial fracture: Case report,” Journal of Trauma, Injury, Infection, and Critical Care, vol. Volume 43 , no. 3 , pp. 521- 522 , 1997.
  9. P.Croniera, G.Pietub, C.Dujardinc, N.Bigorrea, F.Ducelliera and R.Gerardd, “The concept of locking plates,” Orthopaedics & Traumatology: Surgery & Research, vol. 96, no. 4, pp. S17-S36, 2010.
  10. C. Y. Lo, T. H. Lui and Y. K. Sit, “Split Fracture: A Complication of Cerclage Wiring of Acute Patellar Fracture,” Archives of Trauma Research, vol. 3, 2014.

.

How to Cite this article: Gharote A, Laud NS, Mehta B, Shyam A. Delayed Onset Iatrogenic Femur fracture in a Child Primarily treated with Cerclage Wires: Unrecorded Complications of an Unconventional Treatment Method. Journal of Clinical Orthopaedics 2023;8(2):91-93.

(Abstract Text HTML)   (Download PDF)


Treatment of Severe Genu Valgum Deformity Secondary to Renal Osteodystrophy by Medial Close Wedge Osteotomy using an Innovative Trigonometric Technique of Wedge Calculation

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 85-87 | Vaibhav Sahu, Gaurav Garg

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.612


Author: Vaibhav Sahu [1], Gaurav Garg [1]

[1] Department of Orthopedics, ESI-PGIMSR, New Delhi, India

Address of Correspondence

Dr. Gaurav Garg,

Department of Orthopedics, ESI-PGIMSR, New Delhi – 110 015, India.

E-mail: gauravgarg9999@gmail.com


Abstract

Genu valgum is one of the most common deformity of the knee in which the knee bend toward the midline with increase in the intermalleolar distance. It is often treated surgically with the osteotomy or by growth modulation techniques such as hemiepiphysiodesis using bone staplers. We, hereby, present a case of 16-year-old female with severe genu valgum deformity of bilateral lower limbs secondary to renal osteodystrophy causing pain in her bilateral lower limbs and inability to walk. She was treated by McEwan’s close wedge osteotomy using an innovative trigonometric-based technique for calculation of wedge size which resulted in accurate correction of deformity.
Keywords: Genu valgum, Renal osteodystrophy, Medial close wedge osteotomy, Trigonometric method of wedge calculation.


References

1. McEwan W. Lecture on antiseptic osteotomy for genu valgum, genu varum, and other osseous deformities. Lancet 1878;112:911-4.
2. Wesseling-Perry K, Salusky IB. Chronic kidney disease: Mineral and bone disorder in children. Seminars in Nephrology 2013;33:169-79.
3. Niki H, Aoki H, Hirano T, Beppu M. Severe genu valgum deformity and slipped capital femoral epiphysis with renal osteodystrophy: A report of two cases. J Orthop Sci 2012;17:500-6.
4. Oppenheim WL, Fischer SR, Salusky IB. Surgical correction of angular deformity of the knee in children with renal osteodystrophy. J Pediatr Orthop 1997;17:41-9.
5. Davids JR, Fisher R, Lum G, Von Glinski S. Angular deformity of the lower extremity in children with renal osteodystrophy. J Pediatr Orthop 1992;12:291-9.
6. Bauer GC, Insall J, Koshino T. Tibial osteotomy in gonarthrosis (osteo arthritis of the knee). J Bone Joint Surg Am 1969;51:1545-63.
7. Filho EL, Torres MR, Silva MR, Lima FR, Anguir JL. Simplified calculation for corrective osteotomies of long bones. Acta Orthop Bras 2016;24:253-8.
8. Warnock KM, Johnson BD, Wright JB, Ambrose CG, Clanton TO, McGarvey WC. Calculation of the opening wedge for a low tibial osteotomy. Foot Ankle Int 2004;25:778-82.
9. Wylie JD, Maak TG. Medial closing-wedge distal femoral osteotomy for genu valgum with lateral compartment disease. Arthrosc Tech 2016;5:e1357-66.

 

How to Cite this article: Sahu V, Garg G. Treatment of Severe Genu Valgum Deformity Secondary to Renal Osteodystrophy by Medial Close Wedge Osteotomy using an Innovative Trigonometric Technique of Wedge Calculation. Journal of Clinical Orthopaedics Jul-Dec 2023;8(2):85-87.

 (Article Text HTML)  (Download PDF)


Challenges Faced in the Surgical Fixation of a 4 Part Inter-Trochanteric Fracture in a Patient with Ipsilateral Below Knee Amputation and Uncontrolled Diabetes Mellitus

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 88-90 | Ameya Haritosh Velankar, Sanjeev Singh, Ashok Ghodke, Deepak Jain, Aditya More, Kriteya Singh

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.614


Authors: Ameya Haritosh Velankar [1] Sanjeev Singh [1], Ashok Ghodke [1], Deepak Jain [1], Aditya More [1], Kriteya Singh [1]

[1] Department of Orthopaedics, MGM Institute of Health Sciences, Kamothe, Navi-Mumbai- 410209, Maharashtra, India.

Address of Correspondence
Dr. Deepak Jain,
Department of Orthopaedics, MGM Institute of Health Sciences, Kamothe, Navi-Mumbai- 410209, Maharashtra, India.
Email: deepaksjain1993@gmail.com


Abstract

Operative treatment of hip fractures in a patient with below-knee amputation on the same extremity poses a great challenge in terms of obtaining an optimal amount of traction for fracture reduction. The absence of the foot and the distal lower limb which makes the positioning difficult and other medical co-morbidities contribute to the same. We present a case report of a 66-year-old man with ipsilateral below-knee amputation who underwent surgical fixation of a comminuted 4-part right intertrochanteric femur fracture. We discuss the pros and cons of various methods and highlight a simple and effective technique of reverse boot traction for fracture reduction.

Keywords: Inter trochanteric fracture, 4-part fracture, amputation, diabetes mellitus, reverse boot.


References

  1. Gamulin A, Farshad M. Amputated lower limb fixation to the fracture table. Orthopedics 2015;38:679-82.
  2. Gamulin A, Farshad M. Intertrochanteric femur fracture fixation in a patient with below knee amputation presents a surgical dilemma: A case report. Orthopedics 2015;38:679-82.
  3. Lee BH, Ho SW, Kau CY. Surgical fixation of a comminuted inter-trochanteric fracture in a patient with bilateral below knee amputation. Malays Orthop J 2018;12:54-6.
  4. Rethnam U, Yesupalan RS, Shoaib A, Ratnam TK. Hip fracture fixation in a patient with below-knee amputation presents a surgical dilemma: A case report. J Med Case Rep 2008;2:296.
  5. Nagesh H, Bhargava A, Brooks C. Reverse boot traction-a simple technique for operative management of trochanteric fractures in patients with ipsilateral below knee amputation. Orthop Proc 2004;86:82.

.

How to Cite this article: Velankar AH, Singh S, Jain D, Ghodke A, More A, Singh K. Challenges Faced in
the Surgical Fixation of a 4 Part Inter-Trochanteric Femur Fracture in a Patient with Ipsilateral Below Knee Amputation and Uncontrolled Diabetes Mellitus. Journal of Clinical Orthopaedics 2023;8(2):88-90.

(Abstract Text HTML)   (Download PDF)


The Efficacy of High Tibial Osteotomy with or without Post-root Medial Meniscus Repair: A Systematic Review

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 80-84 | Aishwarya Roy, Kiran Kumari, Miten Sheth

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.610


Authors: Aishwarya Roy [1], Kiran Kumari [2], Miten Sheth [1]

[1] Third Year Junior Resident in Seth GS Medical College & KEM Hospital, Mumbai, India,

[2] Postgraduate student, Msc Public Health, University of Bristol, United Kingdom.

Address of Correspondence
Dr. Aishwarya Roy,
16/2 P. majumder Road Kolkata -700078, India.
E-mail: ash46roy@gmail.com


Abstract

Background: High tibial osteotomy (HTO) is a knee joint treatment modality for medial compartment arthritis, aiming to improve articular cartilage healing by shifting the lower limb’s axis. It is commonly used in younger patients with pain and active lifestyles, preventing advanced cartilage deterioration. Varus malalignment may often be accompanied with medial meniscus root tears. In recent years, meniscus root tears are often been repaired. However, the efficacy of medial meniscus repairs with high tibial in varus malalignment with medial meniscal tears remains a controversy.
Purpose: The purpose is to study the functional outcomes of concurrent medial meniscus root repair with HTO versus HTO alone.
Study design: Systematic review.
Methods: According to Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines, we searched PubMed, Embase, Web of Science, and the Cochrane Library databases for studies reporting the outcomes of medial meniscus posterior root tear (MMPRT) repair with HTO versus HTO alone and extracted data about characteristics of patients, clinical functional scores, and radiologic outcomes. One reviewer extracted data and 1 reviewer assessed the risk of bias and performed a synthesis of the evidence. Articles were eligible if they reported the functional outcome of HTO alone or HTO and MMPRT repair in patients of varus malalignment and medial meniscus root tears.
Results: 6 studies with 264 patients were identified. Data from these studies were segregated in HTO only and HTO with medial meniscus repair group. The findings of this systematic review suggest that the outcomes of HTO with MMPHRR and of only HTO are not statistically significant, meaning that doing valgus osteotomy only in patients with varus knee and MMPHRT can give good results regardless of not repairing the meniscus.
Conclusion: HTO with medial meniscus posterior horn root repair seems to have no significant improvement in the functional outcomes of the patient. However, long-term studies need to be performed.
Keywords: High tibial osteotomy, medial meniscus, root repair, arthroscopy, varus malalignment, meniscus, root tear


References

1. Ke, Xiurong et al. “Concurrent arthroscopic meniscal repair during open-wedge high tibial osteotomy is not clinically beneficial for medial meniscus posterior root tears.” Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA vol. 29,3 (2021): 955-965. doi:10.1007/s00167-020-06055-9
2. Lee, Dhong Won et al. “Outcomes of Medial Meniscal Posterior Root Repair During Proximal Tibial Osteotomy: Is Root Repair Beneficial?.” Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association vol. 36,9 (2020): 2466-2475. doi:10.1016/j.arthro.2020.04.038
3. Jing, Lizhong et al. “Second-look arthroscopic findings after medial open-wedge high tibial osteotomy combined with all-inside repair of medial meniscus posterior root tears.” Journal of orthopaedic surgery (Hong Kong) vol. 28,1 (2020): 2309499019888836. doi:10.1177/2309499019888836
4. Suh, Dong Won et al. “Simple Medial Meniscus Posterior Horn Root Repair Using an All-Inside Meniscal Repair Device Combined with High Tibial Osteotomy to Maintain Joint-Space Width in a Patient with a Repairable Tear.” Indian journal of orthopaedics vol. 55,2 397-404. 31 Aug. 2020, doi:10.1007/s43465-020-00234-z
5. Kim YM, Joo YB, Lee WY, Kim YK. Remodified Mason-Allen suture technique concomitant with high tibial osteotomy for medial meniscus posterior root tears improved the healing of the repaired root and suppressed osteoarthritis progression. Knee Surg Sports Traumatol Arthrosc 2020;29:1258-68.
6. Omae, Hiroaki et al. “Arthroscopic pullout repair versus suture anchor repair for medial meniscus posterior root tear combined with high tibial osteotomy.” The Knee vol. 45 (2023): 117-127. doi:10.1016/j.knee.2023.10.011
7. Lee OS, Lee SH, Lee YS. Comparison of the radiologic, arthroscopic, and clinical outcomes between repaired versus unrepaired medial meniscus posterior horn root tear during open wedge high tibial osteotomy. J Knee Surg 2019;34:57-66.
8. Jing L, Liu K, Wang X, Wang X, Li Z, Zhang X, et al. Second-look arthroscopic findings after medial open-wedge high tibial osteotomy combined with all-inside repair of medial meniscus posterior root tears. J Orthop Surg (Hong Kong) 2019;28:230949901988883.
9. Ke X, Qiu J, Chen S, Sun X, Wu F, Yang G, et al. Concurrent arthroscopic meniscal repair during open-wedge high tibial osteotomy is not clinically beneficial for medial meniscus posterior root tears. Knee Surg Sports Traumatol Arthrosc 2020;29:955-645.
10. Kim KI, Bae JK, Jeon SW Kim GB. Medial meniscus posterior root tear does not affect the outcome of medial open-wedge high tibial osteotomy. J Arthroplasty 2021;36:423-8.
11. Omae H, Yanagisawa S, Hagiwara K, Ogoshi A, Omodaka T, Kimura M. Arthroscopic pullout repair versus suture anchor repair for medial meniscus posterior root tear combined with high tibial osteotomy. Knee 2023;45:117-27.
12. Lee HI, Park D, Cho J. Clinical and radiological results with second-look arthroscopic findings after open wedge high tibial osteotomy without arthroscopic procedures for medial meniscal root tears. Knee Surg Relat Res 2018;30:34-41.
13. Suh DW, Yeo WJ, Han SB, So SY, Kyung BS. Simple medial meniscus posterior horn root repair using an all-inside meniscal repair device combined with high tibial osteotomy to maintain joint-space width in a patient with a repairable tear. Indian J Orthop 2020;55:397-404.
14. Bin SI, Kim JM, Shin SJ. Radial tears of the posterior horn of the medial meniscus. Arthroscopy 2004;20:373-8.
15. Lee OS, Ahn S, Lee YS. Effect and safety of early weight-bearing on the outcome after open-wedge high tibial osteotomy: A systematic review and meta-analysis. Arch Orthop Trauma Surg 2017;137:903-11.

How to Cite this article: Roy A, Kumari K. The Efficacy of High Tibial Osteotomy with or without Post-root Medial Meniscus Repair: A Systematic Review. Journal of Clinical Orthopaedics 2023;8(2):80-84.

(Abstract Text HTML)  (Download PDF)


Newer Coronal Alignment Philosophies in Total Knee Arthroplasty: A Brief Review

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 75-79 | Anoop C Dhamangaonkar

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.608


Authors: Anoop C Dhamangaonkar [1, 2]

[1] Adult Joint Reconstruction Surgeon, ORTHOPOD Speciality Clinic, Mumbai, Maharashtra-400 001, India.

Address of Correspondence
Dr. Anoop C Dhamangaonkar,
Adult Joint Reconstruction Surgeon, ORTHOPOD Speciality Clinic, Mumbai, Maharashtra-400 001, India.
E-mail: anoopd_7@yahoo.com


Abstract

Total Knee Arthroplasty (TKA) surgeries have been one of the most successful surgeries over the past half a decade. However a substantial proportion of patients undergoing TKA have the feeling of their replaced knee being an ‘unnatural one’. Also the conventional TKA requires the surgeon to maintain a coronal plane Hip Knee Angle (HKA) of 180 deg with the joint line being parallel to the horizontal and this requires a significant soft tissue release. Recently there are many different pre arthritic knee phenotypes been described with varying joint line obliquities and HKA angles. It is this difference of coronal HKA axis and joint line obliquity in the non replaced and the replaced knee that is believed to be the cause of dissatisfaction after TKA. Many coronal plane alignment philosophies have been reported to bridge this gap as mentioned earlier which replicate the pre arthritic knee anatomy with minimal soft tissue release. The only concern of the different philosophies is the long term implant survival when fixed in a non mechanically aligned position. However robotics have added a significant safety with calibrated execution to prevent outliers and improve implant survivorship. This is a brief review of the different coronal plane alignment philosophies in TKA.

Keywords: Coronal, alignment, dissatisfaction, HKA, joint line obliquity


References

1. Matassi F, Pettinari F, Frasconà F, Innocenti M, Civinini R. Coronal alignment in total knee arthroplasty: A review. J Orthop Traumatol 2023;24:24.
2. Insall J, Scott WN, Ranawat CS. The total condylar knee prosthesis. A report of two hundred and twenty cases. J Bone Joint Surg Am 1979;61:173-80.
3. Ritter MA. The anatomical graduated component total knee replacement: A long-term evaluation with 20-year survival analysis. J Bone Joint Surg Br 2009;91:745-9.
4. Diduch DR, Insall JN, Scott WN, Scuderi GR, Font-Rodriguez D. Total knee replacement in young, active patients. Long-term follow-up and functional outcome. J Bone Joint Surg Am 1997;79:575-82.
5. Rodriguez JA, Bhende H, Ranawat CS. Total condylar knee replacement: A 20-year followup study. Clin Orthop Relat Res 2001;388:10-7.
6. Hungerford DS, Kenna RV, Krackow KA. The porous-coated anatomic total knee. Orthop Clin North Am 1982;13:103-22.
7. Rivière C, Harman C, Boughton O, Cobb J. The kinematic alignment technique for total knee arthroplasty. In: Vendittoli PA, editor. Personalized Hip and Knee Joint Replacement. Ch. 16. Cham, CH: Springer; 2020.
8. Winnock de Grave P, Kellens J, Luyckx T, Tampere T, Lacaze F, Claeys K. Inverse kinematic alignment for total knee arthroplasty. Orthop Traumatol Surg Res 2022;108:103305.
9. Almaawi AM, Hutt JR, Masse V, Lavigne M, Vendittoli PA. The impact of mechanical and restricted kinematic alignment on knee anatomy in total knee arthroplasty. J Arthroplasty 2017;32:2133-40.
10. Innocenti B, Bellemans J, Catani F. Deviations from optimal alignment in TKA: Is there a biomechanical difference between femoral or tibial component alignment? J Arthroplasty 2016;31:295-301.
11. Laforest G, Kostretzis L, Kiss MO, Vendittoli PA. Restricted kinematic alignment leads to uncompromised osseointegration of cementless total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2022;30:705-12.
12. Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat award: Is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 2012;470:45-53.
13. Vanlommel L, Vanlommel J, Claes S, Bellemans J. Slight undercorrection following total knee arthroplasty results in superior clinical outcomes in varus knees. Knee Surg Sports Traumatol Arthrosc 2013;21:2325-30.
14. Zheng K, Sun H, Zhang W, Zhu F, Zhou J, Li R, et al. Mid-term outcomes of navigation-assisted primary total knee arthroplasty using adjusted mechanical alignment. Orthop Surg 2023;15:230-8.
15. Winnock de Grave P, Luyckx T, Claeys K, Tampere T, Kellens J, Müller J, et al. Higher satisfaction after total knee arthroplasty using restricted inverse kinematic alignment compared to adjusted mechanical alignment. Knee Surg Sports Traumatol Arthrosc 2022;30:488-99.
16. Rivière C, Villet L, Jeremic D, Vendittoli PA. What you need to know about kinematic alignment for total knee arthroplasty. Orthop Traumatol Surg Res 2021;107:102773.
17. Hommel H, Tsamassiotis S, Falk R, Fennema P. Adjusted mechanical alignment: Operative technique-Tips and tricks. Orthopade 2020;49:562-9.
18. Kayani B, Konan S, Tahmassebi J, Oussedik S, Moriarty PD, Haddad FS. A prospective double-blinded randomised control trial comparing robotic arm-assisted functionally aligned total knee arthroplasty versus robotic arm-assisted mechanically aligned total knee arthroplasty. Trials 2020;21:194.
19. Cherian JJ, Kapadia BH, Banerjee S, Jauregui JJ, Issa K, Mont MA. Mechanical, anatomical, and kinematic axis in TKA: Concepts and practical applications. Curr Rev Musculoskelet Med 2014;7:89-95.
20. Matziolis G, Adam J, Perka C. Varus malalignment has no influence on clinical outcome in midterm follow-up after total knee replacement. Arch Orthop Trauma Surg 2010;130:1487-91.
21. Chapleau J, Lambert BS, Sullivan TC, Clyburn TA, Incavo SJ. Impact of valgus vs varus mechanical axis correction during primary total knee arthroplasty on postoperative periarticular bone mineral density. J Arthroplasty 2021;36:1792-8.
22. Waterson HB, Clement ND, Eyres KS, Mandalia VI, Toms AD. The early outcome of kinematic versus mechanical alignment in total knee arthroplasty: A prospective randomised control trial. Bone Joint J 2016;98-B:1360-8.
23. Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG. A randomised controlled trial of kinematically and mechanically aligned total knee replacements: Two-year clinical results. Bone Joint J 2014;96-B:907-13.
24. Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG. Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics 2012;35:e160-9.
25. Sappey-Marinier E, Pauvert A, Batailler C, Swan J, Cheze L, Servien E, et al. Kinematic versus mechanical alignment for primary total knee arthroplasty with minimum 2 years follow-up: A systematic review. SICOT J 2020;6:18.
26. Keshmiri A, Maderbacher G, Baier C, Benditz A, Grifka J, Greimel F. Kinematic alignment in total knee arthroplasty leads to a better restoration of patellar kinematics compared to mechanic alignment. Knee Surg Sports Traumatol Arthrosc 2019;27:1529-34.
27. Courtney PM, Lee GC. Early outcomes of kinematic alignment in primary total knee arthroplasty: A meta-analysis of the literature. J Arthroplasty 2017;32:2028-32.e1.
28. Lustig S, Sappey-Marinier E, Fary C, Servien E, Parratte S, Batailler C. Personalized alignment in total knee arthroplasty: Current concepts. SICOT J 2021;7:19.
29. Maniar RN, Johorey AC, Pujary CT, Yadava AN. Margin of error in alignment: A study undertaken when converting from conventional to computer-assisted total knee arthroplasty. J Arthroplasty 2011;26:82-7.
30. Schroeder L, Pumilia CA, Sarpong NO, Martin G. Patient satisfaction, functional outcomes, and implant survivorship in patients undergoing customized cruciate-retaining TKA. JBJS Rev 2021;9:e2000074-7.
31. MacDessi SJ, Griffiths-Jones W, Harris IA, Bellemans J, Chen DB. Coronal plane alignment of the knee (CPAK) classification. Bone Joint J 2021;103-B:329-37.
32. Oh SM, Bin SI, Kim JY, Lee BS, Kim JM. Impact of preoperative varus deformity on postoperative mechanical alignment and long-term results of “mechanical” aligned total knee arthroplasty. Orthop Traumatol Surg Res 2019;105:1061-6.

How to Cite this article: Dhamangaonkar AC. Newer Coronal Alignment Philosophies in Total Knee Arthroplasty: A Brief Review. Journal of Clinical Orthopaedics 2023;8(2)75-79.

(Abstract Text HTML)  (Download PDF)


Advances in Limb Reconstruction Surgery

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 69-71 | Ajit Chalak, Schine Kale, Ashok Ghodke

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.604


Authors: Ajit Chalak [1], Schine Kale [2], Ashok Ghodke [3]

[1] Department of Orthopaedic Surgery, Dr D Y Patil Hospital, Nerul, Navi Mumbai, Maharashtra, India,
[2] Department Of Orthopaedics, Dr DY Patil Hospital, Navi Mumbai, India,
[3] Department of Orthopaedics, MGM Medical College, Navi Mumbai, India.

Address of Correspondence
Dr. Ajit Chalak,
Department of Orthopaedic Surgery, Fellowship in Limb Reconstruction and Ilizarov Surgery, Mumbai, Maharashtra, India.
E-mail: ajitchalak@gmail.com


Abstract

Limb reconstruction surgery has witnessed remarkable advancements in recent years. The hexapods have revolutionized limb reconstruction surgery, offering patients reduced postoperative discomfort, accelerated recovery times, and a quicker return to functional independence. This article aims to delve into the current aspects of limb reconstruction surgery, exploring the strategies employed in addressing these complex issues.
Keywords: Limb reconstruction, Stimulan, Hexapod, ALFA Fixator


References

1. Zhang Q, Yin P, Hao M, Li J, Lv H, Li T, et al. Bone transport for the treatment of infected forearm nonunion. Injury 2014;45:1880-4.
2. Li J, Li M, Wang W, Li B, Liu L. Evolution and development of ilizarov technique in the treatment of infected long bone nonunion with or without bone defects. Orthop Surg 2022;14:824-30.
3. Rozbruch SR, Pugsley JS, Fragomen AT, Ilizarov S. Repair of tibial nonunions and bone defects with the Taylor Spatial Frame. J Orthop Trauma 2008;22:88-95.
4. Napora JK, Weinberg DS, Eagle BA, Kaufman BR, Sontich JK. Hexapod stacked transport for tibial infected nonunions with bone loss: Long-term functional outcomes. J Orthop Trauma 2018;32:e12-8.
5. Rödl R, Leidinger B, Böhm A, Winkelmann W. Correction of deformities with conventional and hexapod frames-comparison of methods. Z Orthop Ihre Grenzgeb 2003;141:92-8.
6. Sheridan GA, Pang A, Page BJ, Greenstein MD, Cardoso GS, Amorim R, et al. The management of tibial bone defects: A multicenter experience of hexapod and ilizarov frames. J Am Acad Orthop Surg Glob Res Rev 2023;7:e23.00033.
7. McLaren AC, Gutierrez FN, Martin M, McLemore R. Musculoskeletal Infection. Vol 2. United States: OKU, AAOS, Musculoskeletal Infection Society; 2022. p. 95-116.
8. Kyriacou H, Kamaraj A, Khan WS. Developments in antibiotic-eluting scaffolds for the treatment of osteomyelitis. Appl Sci 2020;10:2244.
9. Mereddy P, Nallamilli SR, Gowda VP, Kasha S, Godey SK, Nallamilli RR, et al. The use of Stimulan in bone and joint infections. Bone Jt Open 2023;4:516-22.
10. Vardhan S, Regmi A, Niraula BB, Kunwar BB, Olkha V, Dhingra M. Articulated lengthening fixation apparatus (ALFA) for the management of gap non-union of distal femur: Initial experience on a new technique. J Orthop 2023;49:42-7.
11. Calder PR, Wright J, Goodier WD. An update on the intramedullary implant in limb lengthening: A quinquennial review Part 1: The further influence of the intramedullary nail in limb lengthening. Injury 2022;53 Suppl 3:S81-7.

How to Cite this article: Chalak A. Advances in Limb Reconstruction Surgery. Journal of Clinical Orthopaedics 2023;8(2):69-71.

(Abstract Text HTML)   (Download PDF)


Surgical Management of Irreparable Massive Rotator Cuff Tears – Current Concepts

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 62-68 | Gaurav Sharma, Sanjay Garude

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.602


Authors: Gaurav Sharma [1], Sanjay Garude [1, 2]

[1] Department of Orthopaedics, Sir HN Reliance Foundation Hospital, Mumbai, India.
[2] Department of Orthopaedics, Lilavati Hospital, Mumbai, India.

Address of Correspondence
Dr. Gaurav Sharma,
Consultant, Sir HN Reliance Foundation Hospital, Mumbai, India.
Email: sharmagaurav@live.com


Abstract

The treatment of irreparable massive rotator cuff tear is a challenge for shoulder surgeons due to myriad of options presently available. The conservative methods are usually associated with suboptimal outcomes. The present review aims to discuss the current evidence for treating irreparable massive rotator cuff tears and propose an algorithm for the decision making.
Keywords: Irreparable, massive, rotator cuff tears, tendon transfer, superior capsular reconstruction


References

1. Oliva F, Osti L, Padulo J, Maffulli N. Epidemiology of the rotator cuff tears: A new incidence related to thyroid disease. Muscles Ligaments Tendons J 2014;4:309-14.
2. Rashid MS, Cooper C, Cook J, Cooper D, Dakin SG, Snelling S, et al. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year. Acta Orthop 2017;88:606-11.
3. Bedi A, Dines J, Warren RF, Dines DM. Massive tears of the rotator cuff. J Bone Joint Surg Am 2010;92:1894-908.
4. Mihata T, Lee TQ, Hasegawa A, Fukunishi K, Kawakami T, Fujisawa Y, et al. Five-year follow-up of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. J Bone Joint Surg Am 2019;101:1921-30.
5. Mihata T, Lee TQ, Hasegawa A, Kawakami T, Fukunishi K, Fujisawa Y, et al. Arthroscopic superior capsule reconstruction can eliminate pseudoparalysis in patients with irreparable rotator cuff tears. Am J Sports Med 2018;46:2707-16.
6. Mihata T, Lee TQ, Watanabe C, Fukunishi K, Ohue M, Tsujimura T, et al. Clinical results of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. Arthroscopy 2013;29:459-70.
7. Kanatlı U, Özer M, Ataoğlu MB, Öztürk BY, Gül O, Çetinkaya M, et al. Arthroscopic-assisted latissimus dorsi tendon transfer for massive, irreparable rotator cuff tears: Technique and short-term follow-up of patients with pseudoparalysis. Arthroscopy 2017;33:929-37.
8. Kany J, Grimberg J, Amaravathi RS, Sekaran P, Scorpie D, Werthel JD. Arthroscopically-assisted latissimus dorsi transfer for irreparable rotator cuff insufficiency: Modes of failure and clinical correlation. Arthroscopy 2018;34:1139-50.
9. Moursy M, Forstner R, Koller H, Resch H, Tauber M. Latissimus dorsi tendon transfer for irreparable rotator cuff tears: A modified technique to improve tendon transfer integrity. J Bone Joint Surg Am 2009;91:1924-31.
10. Schumaier A, Kovacevic D, Schmidt C, Green A, Rokito A, Jobin C, et al. Defining massive rotator cuff tears: A Delphi consensus study. J Shoulder Elbow Surg 2020;29:674-80.
11. Yian EH, Sodl JF, Dionysian E, Schneeberger AG. Anterior deltoid reeducation for irreparable rotator cuff tears revisited. J Shoulder Elbow Surg 2017;26:1562-5.
12. Zingg PO, Jost B, Sukthankar A, Buhler M, Pfirrmann CW, Gerber C. Clinical and structural outcomes of nonoperative management of massive rotator cuff tears. J Bone Joint Surg Am 2007;89:1928-34.
13. El-Azab HM, Rott O, Irlenbusch U. Long-term follow-up after latissimus dorsi transfer for irreparable posterosuperior rotator cuff tears. J Bone Joint Surg Am 2015;97:462-9.
14. Elhassan BT, Wagner ER, Werthel JD. Outcome of lower trapezius transfer to reconstruct massive irreparable posterior-superior rotator cuff tear. J Shoulder Elbow Surg 2016;25:1346-53.
15. Gerber C, Maquieira G, Espinosa N. Latissimus dorsi transfer for the treatment of irreparable rotator cuff tears. J Bone Joint Surg Am 2006;88:113-20.
16. Burnier M, Elhassan BT, Sanchez-Sotelo J. Surgical management of irreparable rotator cuff tears: What works, what does not, and what is coming. J Bone Joint Surg Am 2019;101:1603-12.
17. Burkhart SS, Nottage WM, Ogilvie-Harris DJ, Kohn HS, Pachelli A. Partial repair of irreparable rotator cuff tears. Arthrosc J Arthrosc Relat Surg 1994;10:363-70.
18. Malahias MA, Kostretzis L, Chronopoulos E, Brilakis E, Avramidis G, Antonogiannakis E. Arthroscopic partial repair for massive rotator cuff tears: Does it work? A systematic review. Sports Med Open 2019;5:13.
19. Mizuki Y, Tamai M, Senjyu T, Tkagishi K. Arthroscopic extreme medialized repair for massive rotator cuff tear: Resection of cartilage and subchondral bone over the top of the humeral head. Arthrosc Tech 2022;11:e965-70.
20. Ferguson DP, Lewington MR, Smith DT, Wong IH. Graft utilization in the augmentation of large-to-massive rotator cuff repairs. Am J Sports Med 2016;44:2984-92.
21. Lederman ES, Toth AP, Nicholson GP, Nowinski RJ, Bal GK, Williams GR, et al. A prospective, multicenter study to evaluate clinical and radiographic outcomes in primary rotator cuff repair reinforced with a xenograft dermal matrix. J Shoulder Elbow Surg 2016;25:1961-70.
22. Chalmers PN, Tashjian RZ. Patch augmentation in rotator cuff repair. Curr Rev Musculoskelet Med 2020;13:561-71.
23. Castagna A, Cesari E, Di Matteo B, Osimani M, Garofalo R, Kon E, et al. Porcine dermal xenograft as augmentation in the treatment of large rotator cuff tears: Clinical and magnetic resonance results at 2-year follow-up. Joints 2018;6:135-40.
24. Avanzi P, Giudici LD, Capone A, Cardoni G, Lunardi G, Foti G, et al. Prospective randomized controlled trial for patch augmentation in rotator cuff repair: 24-month outcomes. J Shoulder Elbow Surg 2019;28:1918-27.
25. Flury M, Rickenbacher D, Jung C, Schneider MM, Endell D, Audigé L. Porcine dermis patch augmentation of supraspinatus tendon repairs: A pilot study assessing tendon integrity and shoulder function 2 years after arthroscopic repair in patients aged 60 years or older. Arthroscopy 2018;34:24-37.
26. Gupta AK, Hug K, Boggess B, Gavigan M, Toth AP. Massive or 2- tendon rotator cuff tears in active patients with minimal glenohumeral arthritis. Am J Sports Med 2013;41:872-9.
27. Bokor DJ, Sonnabend D, Deady L, Cass B, Young A, Van Kampen C, et al. Preliminary investigation of a biological augmentation of rotator cuff repairs using a collagen implant: A 2-year MRI follow-up. Muscles Ligaments Tendons J 2015;5:144-50.
28. Ranebo MC, Hallgren HC, Norlin R, Adolfsson LE. Long-term clinical and radiographic outcome of rotator cuff repair with a synthetic interposition graft: A consecutive case series with 17 to 20 years of follow-up. J Shoulder Elbow Surg 2018;27:1622-8.
29. Nada AN, Debnath UK, Robinson DA, Jordan C. Treatment of massive rotator-cuff tears with a polyester ligament (Dacron) augmentation: Clinical outcome. J Bone Joint Surg Br 2010;92:1397-402.
30. Cowling P, Hackney R, Dube B, Grainger AJ, Biglands JD, Stanley M, et al. The use of a synthetic shoulder patch for large and massive rotator cuff tears – a feasibility study. BMC Musculoskelet Disord 2020;21:213.
31. Smolen D, Haffner N, Mittermayr R, Hess F, Sternberg C, Leuzinger J. Application of a new polyester patch in arthroscopic massive rotator cuff repair-a prospective cohort study. J Shoulder Elbow Surg 2020;29:e11-21.
32. Ciampi P, Scotti C, Nonis A, Vitali M, Di Serio C, Peretti GM, et al. The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: A 3-year follow-up study. Am J Sports Med 2014;42:1169-75.
33. Encalada-Diaz I, Cole BJ, Macgillivray JD, Ruiz-Suarez M, Kercher JS, Friel NA, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: Preliminary results at 12 months’ follow-up. J Shoulder Elbow Surg 2011;20:788-94.
34. Burkhard MD, Dietrich M, Andronic O, Nikolic N, Grueninger P. Arthroscopic repair of posterosuperior rotator cuff tears with bioabsorbable patch augmentation: A magnetic resonance-controlled case series with 1-year follow-up. JSES Int 2020;4:860-8.
35. Gilot GJ, Alvarez-Pinzon AM, Barcksdale L, Westerdahl D, Krill M, Peck E. Outcome of large to massive rotator cuff tears repaired with and without extracellular matrix augmentation: A prospective comparative study. Arthroscopy 2015;31:1459-65.
36. Petri M, Warth RJ, Horan MP, Greenspoon JA, Millett PJ. Outcomes after open revision repair of massive rotator cuff tears with biologic patch augmentation. Arthroscopy 2016;32:1752-60.
37. Hall T, Danielson K, Brandenburg S, Matelic T. A case series of recurrent myotendinous rotator cuff tears repaired and augmented with dermal allograft: Clinical outcomes at two years. J Shoulder Elbow Surg 2020;29:2264-71.
38. Hohn EA, Gillette BP, Burns JP. Outcomes of arthroscopic revision rotator cuff repair with acellular human dermal matrix allograft augmentation. J Shoulder Elbow Surg 2018;27:816-23.
39. Muench LN, Kia C, Jerliu A, Williams AA, Berthold DP, Cote MP, et al. Clinical outcomes following biologically enhanced patch augmentation repair as a salvage procedure for revision massive rotator cuff tears. Arthroscopy 2020;36:1542-51.
40. Mori D, Funakoshi N, Yamashita F. Arthroscopic surgery of irreparable large or massive rotator cuff tears with low-grade fatty degeneration of the infraspinatus: Patch autograft procedure versus partial repair procedure. Arthroscopy 2013;29:1911-21.
41. Rosales-Varo AP, García-Espona MA, Roda-Murillo O. Outcomes of rotator cuff augmentation surgery with autologous fascia lata. Rev Esp Cir Ortop Traumatol (Engl Ed) 2018;62:157-67.
42. Mori D, Funakoshi N, Yamashita F, Wakabayashi T. Effect of Fatty degeneration of the infraspinatus on the efficacy of arthroscopic patch autograft procedure for large to massive rotator cuff tears. Am J Sports Med 2015;43:1108-17.
43. Tempelaere C, Desmoineaux P, Lespagnol F, Pierrart J, Beaufils P, Pujol N. Surgical repair of massive rotator cuff tendon tears: Autologous quadriceps tendon graft versus arthroscopic repair. Orthop Traumatol Surg Res 2017;103:435-40.
44. Scheibel M, Brown A, Woertler K, Imhoff AB. Preliminary results after rotator cuff reconstruction augmented with an autologous periosteal flap. Knee Surg Sports Traumatol Arthrosc 2007;15:305-14.
45. Cai YZ, Zhang C, Jin RL, Shen T, Gu PC, Lin XJ, Chen JD. Arthroscopic rotator cuff repair with graft augmentation of 3-dimensional biological collagen for moderate to large tears: A randomized controlled study. Am J Sports Med 2018;46:1424-31.
46. Baldwin M, Nagra NS, Greenall G, Carr AJ, Beard D, Rees JL, et al. Use of implantable meshes for augmented rotator cuff repair: A systematic review and meta-analysis. BMJ Open 2020;10:e039552.
47. Haque A, Modi A. Interposition grafting for irreparable rotator cuff tears: Systematic review and specialist practice report. J Clin Orthop Trauma 2021;17:218-22.
48. Makovicka JL, Chung AS, Patel KA, Deckey DG, Hassebrock JD, Tokish JM. Superior capsule reconstruction for irreparable rotator cuff tears: A systematic review of biomechanical and clinical outcomes by graft type. J Shoulder Elbow Surg 2020;29:392-401.
49. de Campos Azevedo CI, Andrade R, Gago Ângelo AC, Espregueira-Mendes J, Ferreira N, Sevivas N. Fascia lata autograft versus human dermal allograft in arthroscopic superior capsular reconstruction for irreparable rotator cuff tears: A systematic review of clinical outcomes. Arthroscopy 2020;36:579-91.e2.
50. Barth J, Olmos MI, Swan J, Barthelemy R, Delsol P, Boutsiadis A. Superior capsular reconstruction with the long head of the biceps autograft prevents infraspinatus retear in massive posterosuperior retracted rotator cuff tears. Am J Sports Med 2020;48:1430-8.
51. Chiang CH, Shaw L, Chih WH, Yeh ML, Su WR. Arthroscopic rotator cuff repair combined with modified superior capsule reconstruction as reinforcement by the long head of the biceps. Arthrosc Tech 2019;8:e1223-31.
52. El-Shaar R, Soin S, Nicandri G, Maloney M, Voloshin I. Superior capsular reconstruction with a long head of the biceps tendon autograft: A cadaveric study. Orthop J Sports Med 2018;6:2325967118785365.
53. Krishnan P, Maassen N, Lee C, Baker H, Koh J, Amirouche F, et al. Long head of the biceps autograft performs biomechanically similar to human dermal allograft for superior capsule reconstruction after rotator cuff tear. Arthroscopy 2023;39:706-15.
54. Rosales-Varo AP, Zafra M, García-Espona MA, Flores-Ruiz MA, Roda O. Superior capsular reconstruction of irreparable rotator cuff tear using autologous hamstring graft. Rev Esp Cir Ortop Traumatol (Engl Ed) 2019;63:1-6.
55. Milano G, Saccomanno MF, Colosio A, Adriani M, Galli S, Scaini A, et al. Arthroscopic superior capsule reconstruction with doubled autologous semitendinosus tendon graft. Arthrosc Tech 2020;9:e1665-72.
56. Croom WP, Adamson GJ, Lin CC, Patel NA, Kantor A, McGarry MH, et al. A biomechanical cadaveric study of patellar tendon allograft as an alternative graft material for superior capsule reconstruction. J Shoulder Elbow Surg 2019;28:1241-8.
57. Kim JW, Nam DJ. Arthroscopic superior capsular reconstruction by the mini-open modified keyhole technique using an achilles tendon-bone allograft. Arthrosc Tech 2020;9:e275-81.
58. Gerber C, Vinh TS, Hertel R, Hess CW. Latissimus dorsi transfer for the treatment of massive tears of the rotator cuff. A preliminary report. Clin Orthop Relat Res 1988;232:51-61.
59. Omid R, Lee B. Tendon transfers for irreparable rotator cuff tears. J Am Acad Orthop Surg 2013;21:492-501.
60. Gerber C, Rahm SA, Catanzaro S, Farshad M, Moor BK. Latissimus dorsi tendon transfer for treatment of irreparable posterosuperior rotator cuff tears: long-term results at a minimum follow-up of ten years. J Bone Joint Surg Am 2013;95:1920-6.
61. Gerber C. Latissimus dorsi transfer for the treatment of irreparable tears of the rotator cuff. Clin Orthop Relat Res 1992;275:152-60.
62. Kucirek NK, Hung NJ, Wong SE. Treatment options for massive irreparable rotator cuff tears. Curr Rev Musculoskelet Med 2021;14:304-15.
63. Muench LN, Kia C, Williams AA, Avery DM 3rd, Cote MP, Reed N, et al. High clinical failure rate after latissimus dorsi transfer for revision massive rotator cuff tears. Arthroscopy 2020;36:88-94.
64. Elhassan BT, Wagner ER, Kany J. Latissimus dorsi transfer for irreparable subscapularis tear. J Shoulder Elbow Surg 2020;29:2128-34.
65. Mun SW, Kim JY, Yi SH, Baek CH. Latissimus dorsi transfer for irreparable subscapularis tendon tears. J Shoulder Elbow Surg 2018;27:1057-64.
66. Herzberg G, Urien JP, Dimnet J. Potential excursion and relative tension of muscles in the shoulder girdle: Relevance to tendon transfers. J Shoulder Elbow Surg 1999;8:430-7.
67. Hartzler RU, Barlow JD, An KN, Elhassan BT. Biomechanical effectiveness of different types of tendon transfers to the shoulder for external rotation. J Shoulder Elbow Surg 2012;21:1370-6.
68. Elhassan BT, Alentorn-Geli E, Assenmacher AT, Wagner ER. Arthroscopic-assisted lower trapezius tendon transfer for massive irreparable posterior-superior rotator cuff tears: Surgical technique. Arthrosc Tech 2016;5:e981-8.
69. Ghoraishian M, Stone MA, Elhassan B, Abboud J, Namdari S. Techniques for lower trapezius tendon transfer for the management of irreparable posterosuperior rotator cuff tears. J Orthop 2020;22:331-5.
70. Desai V, Stambulic T, Daneshvar P, Bicknell RT. Lower trapezius tendon transfer for irreparable rotator cuff injuries: A scoping review. JSES Rev Rep Tech 2022;3:1-9.
71. Wirth MA, Rockwood CA Jr. Operative treatment of irreparable rupture of the subscapularis. J Bone Joint Surg Am 1997;79:722-31.
72. Elhassan B, Ozbaydar M, Massimini D, Diller D, Higgins L, Warner JJ. Transfer of pectoralis major for the treatment of irreparable tears of subscapularis: Does it work? J Bone Joint Surg Br 2008;90:1059-65.
73. Galatz LM, Connor PM, Calfee RP, Hsu JC, Yamaguchi K. Pectoralis major transfer for anterior-superior subluxation in massive rotator cuff insufficiency. J Shoulder Elbow Surg 2003;12:1-5.
74. Jost B, Puskas GJ, Lustenberger A, Gerber C. Outcome of pectoralis major transfer for the treatment of irreparable subscapularis tears. J Bone Joint Surg Am 2003;85:1944-51.
75. Jennings GJ, Keereweer S, Buijze GA, De Beer J, DuToit D. Transfer of segmentally split pectoralis major for the treatment of irreparable rupture of the subscapularis tendon. J Shoulder Elbow Surg 2007;16:837-42.
76. Konrad GG, Sudkamp NP, Kreuz PC, Jolly JT, McMahon PJ, Debski RE. Pectoralis major tendon transfers above or underneath the conjoint tendon in subscapularis-deficient shoulders. An in vitro biomechanical analysis. J Bone Joint Surg Am 2007;89:2477-84.
77. Boileau P, Baba M, McClelland WB Jr., Thélu CÉ, Trojani C, Bronsard N. Isolated loss of active external rotation: A distinct entity and results of L’Episcopo tendon transfer. J Shoulder Elbow Surg 2018;27:499-509.
78. Neyton L, Gossing L, Gasbarro G, Kirsch JM. Modified L’Episcopo tendon transfer for isolated loss of active external rotation. J Shoulder Elbow Surg 2020;29:2587-94.
79. Verhelst L, Vandekerckhove PJ, Sergeant G, Liekens K, Van Hoonacker P, Berghs B. Reversed arthroscopic subacromial decompression for symptomatic irreparable rotator cuff tears: Mid-term follow-up results in 34 shoulders. J Shoulder Elbow Surg 2010;19:601-8.
80. Pander P, Sierevelt IN, Pecasse GA, van Noort A. Irreparable rotator cuff tears: Long-term follow-up, five to ten years, of arthroscopic debridement and tenotomy of the long head of the biceps. Int Orthop 2018;42:2633-8.
81. Walch G, Edwards TB, Boulahia A, Nové-Josserand L, Neyton L, Szabo I. Arthroscopic tenotomy of the long head of the biceps in the treatment of rotator cuff tears: Clinical and radiographic results of 307 cases. J Shoulder Elbow Surg 2005;14:238-46.
82. Soderlund M, Boren M, O’Reilly A, San Juan A, Mahylis JM. Arthroscopic debridement for management of massive, irreparable rotator cuff tears: A systematic review of outcomes. JSES Rev Rep Tech 2021;2:1-7.
83. Digge VK, Sai Krishna ML, Santanu SB, Kumar V, Nag H. The outcome of debridement in massive irreparable rotator cuff tear-a systematic review. J Arthos Joint Surg 2022;9:144.
84. Descamps J, Kierszbaum E, Protais M, Marion B, Bouché PA, Aïm F. Outcomes of isolated biceps tenodesis/tenotomy or partial rotator cuff repair associated with biceps tenodesis/tenotomy for massive irreparable tears: A systematic review. J Clin Med 2023;12:2565.
85. Burkhart SS. Arthroscopic treatment of massive rotator cuff tears. Clinical results and biomechanical rationale. Clin Orthop Relat Res 1991;267:45-56.
86. Park JG, Cho NS, Song JH, Baek JH, Rhee YG. Long-term outcome of tuberoplasty for irreparable massive rotator cuff tears: Is tuberoplasty really applicable? J Shoulder Elbow Surg 2016;25:224-31.
87. Savarese E, Romeo R. New solution for massive, irreparable rotator cuff tears: The subacromial “biodegradable spacer”. Arthrosc Tech 2012;1:e69-74.
88. Yallapragada RK, Apostolopoulos A, Katsougrakis I, Selvan TP. The use of a subacromial spacer-inspace balloon in managing patients with irreparable rotator cuff tears. J Orthop 2018;15:862-8.
89. Deranlot J, Herisson O, Nourissat G, Zbili D, Werthel JD, Vigan M, et al. Arthroscopic subacromial spacer implantation in patients with massive irreparable rotator cuff tears: Clinical and radiographic results of 39 retrospectives cases. Arthroscopy 2017;33:1639-44. Erratum in: Arthroscopy 2018;34:647.
90. Maman E, Safran O, Beyth S, Mozes G, Dekel A, Michael B, et al. Biceps tenotomy does not affect the functional outcomes of patients treated with spacer implantation due to massive irreparable rotator cuff tears. Open Orthop J 2017;11:1577-84.
91. Malahias MA, Brilakis E, Avramidis G, Antonogiannakis E. Satisfactory mid-term outcome of subacromial balloon spacer for the treatment of irreparable rotator cuff tears. Knee Surg Sports Traumatol Arthrosc 2019;27:3890-6.
92. Kunze KN, Moran J, Taylor SA, Fu MC, Rodeo SA, Warren RF, et al. Subacromial balloon spacer implantation for massive irreparable rotator cuff tears is associated with restoration of the acromiohumeral interval and glenohumeral center of pressure: A systematic review and meta-analysis of controlled laboratory studies. Am J Sports Med 2023;51:3870-9.
93. Sandler AB, Gil LG, Scanaliato JP, Green CK, Dunn JC, Parnes N. Subacromial balloon placement demonstrates no advantage over debridement in the treatment of massive irreparable rotator cuff tears: A dual-armed systematic review and meta-analysis of over 1000 patients. Am J Sports Med. 2023 Jun 27:3635465231168127.
94. Grammont PM, Baulot E. Delta shoulder prosthesis for rotator cuff rupture. Orthopedics 1993;16:65-8.
95. Denard PJ. An algorithmic approach to the surgical management of massive rotator cuff tears based on imaging, function, and repairability. Arthroscopy 2023;39:2392-7.
96. Viswanath A, Bale S, Trail I. Reverse total shoulder arthroplasty for irreparable rotator cuff tears without arthritis: A systematic review. J Clin Orthop Trauma 2021;17:267-72.
97. Muh SJ, Streit JJ, Wanner JP, Lenarz CJ, Shishani Y, Rowland DY, et al. Early follow-up of reverse total shoulder arthroplasty in patients sixty years of age or younger. J Bone Joint Surg Am 2013;95:1877-83.
98. Samuelsen BT, Wagner ER, Houdek MT, Elhassan BT, Sánchez-Sotelo J, Cofield R, et al. Primary reverse shoulder arthroplasty in patients aged 65 years or younger. J Shoulder Elbow Surg 2017;26:e13-7.
99. Ernstbrunner L, Suter A, Catanzaro S, Rahm S, Gerber C. Reverse total shoulder arthroplasty for massive, irreparable rotator cuff tears before the age of 60 years: Long-term results. J Bone Joint Surg Am 2017;99:1721-9.
100. Sevivas N, Ferreira N, Andrade R, Moreira P, Portugal R, Alves D, et al. Reverse shoulder arthroplasty for irreparable massive rotator cuff tears: A systematic review with meta-analysis and meta-regression. J Shoulder Elbow Surg 2017;26:e265-77.
101. Werner CM, Steinmann PA, Gilbart M, Gerber C. Treatment of painful pseudoparesis due to irreparable rotator cuff dysfunction with the Delta III reverse-ball-and-socket total shoulder prosthesis. J Bone Joint Surg Am 2005;87:1476-86.
102. Chelli M, Lo Cunsolo L, Gauci MO, Gonzalez JF, Domos P, Bronsard N, et al. Reverse shoulder arthroplasty in patients aged 65 years or younger: A systematic review of the literature. JSES Open Access 2019;3:162-7.
103. Boileau P, Rumian AP, Zumstein MA. Revesed shoulder arthroplasty with modified L’Episcopo for combined loss of active elevation and external rotation. J Shoulder Elbow Surg 2010;19:20-30.

How to Cite this article: Sharma G, Garude S. Surgical Management of Irreparable Massive Rotator Cuff Tears – Current Concepts. Journal of Clinical Orthopaedics 2023;8(2):62-68.

(Abstract Text HTML)   (Download PDF)


Trends in Guided Growth for Correction of Angular Deformities around the Knee: Past, Present, and Future

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 57-61 | Swapnil M. Keny

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.600


Authors: Swapnil M. Keny [1, 2]

[1] Department of Pediatric Orthopaedics, Sir H.N. Reliance and Apollo Hospital, Mumbai, Maharashtra, India.
[2] Department of Orthopaedics, K.B. Bhabha Hospital, Mumbai, Maharashtra, India.

Address of Correspondence
Dr. Swapnil M. Keny,
Department of Pediatric Orthopaedics, Sir H.N. Reliance and Apollo Hospital, Mumbai, Maharashtra, India;
Department of Orthopaedics, K.B. Bhabha Hospital, Mumbai, Maharashtra, India.
E-mail: peadortho@gmail.com


Abstract

The principles of guided growth have been followed in orthopaedics since historic times . The bent tree braced to a stake to make it grow upward and straight is the first reference to the principles of growth modulation in the annals of orthopaedic history
Keywords: Guided Growth, Epiphysiodesis, Hemiepiphysiodesis, growth modulation, eight plates, genu varum, genu valgum, deformity correction, pediatric orthopaedics, growth plate


References

1. Karger C. Les Épiphysiodèses Chirurgicales Techniques, Indications et Résultats. Vol. 52. In: Conférences D’enseignement SOFCOT; 1995. p. 219-34.
2. Paley D. Principles of Deformity Correction. 1st ed. Corr. 3rd Printing. Revised ed. Berlin: Springer-Verlag; 2005.
3. Metaizeau JP, Wong-Chung J, Bertrand H, Pasquier P. Percutaneous epiphysiodesis using transphyseal screws (PETS). J Pediatr Orthop 1998;18:363-9.
4. Song MH, Choi ES, Park MS, Yoo WJ, Chung CY, Choi IH, et al. Percutaneous epiphysiodesis using transphyseal screws in the management of leg length discrepancy: Optimal operation timing and techniques to avoid complications. J Pediatr Orthop 2015;35:89-93.
5. Normandin BM, Tennent, DJ, Baldini TH, Blanchard AM, Rhodes JT. Epiphysiodesis screw bending. Orthopedics 2017;40:e717-20.
6. Stevens PM. Guided growth for angular correction: A preliminary series using a tension band plate. J Pediatr Orthop 2007;27:253-9.
7. Guzman H, Yaszay B, Scott VP, Bastrom TP, Mubarak SJ. Early experience with medial femoral tension band plating in idiopathic genu valgum. J Child Orthop 2011;5:11-7.
8. Gaumétou E, Mallet C, Souchet P, Mazda K, Ilharreborde B. Poor efficiency of eight-plates in the treatment of lower limb discrepancy. J Pediatr Orthop 2016;36:715-9.
9. Shabtai L, Herzenberg JE. Limits of growth modulation using tension band plates in the lower extremities. J Am Acad Orthop Surg 2016;24:691-701.
10. Leveille LA, Razi O, Johnston CE. Rebound deformity after growth modulation in patients with coronal plane angular deformities about the knee: Who gets it and how much? J Pediatr Orthop 2017;18:2.
11. Popkov D. Guided growth for valgus deformity correction of knees in a girl with osteopetrosis: A case report. Strategies Trauma Limb Reconstr 2017;12:197-204.
12. Boero S, Michelis MB, Riganti S. Use of the eight-plate for angular correction of knee deformities due to idiopathic and pathologic physis: Initiating treatment according to etiology. J Child Orthop 2011;5:209-16.
13. Yilmaz G, Oto M, Thabet AM, Rogers KJ, Anticevic D, Thacker MM, et al. Correction of lower extremity angular deformities in skeletal dysplasia with hemiepiphysiodesis: A preliminary report. J Pediatr Orthop 2014;34:336-45.
14. Danino B, Rödl R, Herzenberg JE, Shabtai L, Grill F, Narayanan U, et al. Guided growth: Preliminary results of a multinational study of 967 physes in 537 patients. J Child Orthop 2018;12:91-6.
15. Sharma S, Rymarczuk G, Taylor HO. 3D printed patient-specific instrumentation in limb deformity correction. 3D Print Med 2017;3:11.
16. Laubscher M, Mitchell C, Timms A, Goodier D, Calder P. Magnetic controlled growing rods for early-onset scoliosis: A 4-year follow-up. Spine (Phila Pa 1976) 2019;44:409-15.
17. Lee KJ, Nango TM, Hendrick RJ. Piezoelectric sensors advance orthopedic implant technology for permanent in vivo monitoring. Nat Commun 2020;11:4884.
18. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32:762-98.
19. Guo K, Zhang J, Fu Z. Computer-assisted navigation systems for pediatric upper cervical instrumentation: A systematic review. Spine (Phila Pa 1976) 2018;43:E811-7.

How to Cite this article: Keny SM. Trends in Guided Growth for Correction of Angular Deformities around the Knee: Past, Present, and Future. Journal of Clinical Orthopaedics 2023;8(2):57-61.

(Abstract Text HTML)  (Download PDF)


Surge of Arthroscopic assisted and endoscopic surgical Universe in Arthroscopic Shoulder Metaverse

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 54-56 | Nilesh Vishwakarma, Sandeep Biraris

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.598


Authors: Nilesh Vishwakarma [1], Sandeep Biraris [1]

[1] Department of Orthopaedics, MGMIHS, Navi Mumbai, India.

Address of Correspondence
Dr. Nilesh Vishwakarma,
Department of Orthopaedics, MGMIHS, Navi Mumbai, India.
Email: nsv1978@gmail.com


Abstract

There has been an expansion of the arthroscopic shoulder metaverse with the inclusion of multiple extra-articular and periarticular procedures being done, especially in shoulder. Many shoulder surgeries which were previously done open or in a minimally invasive way have become amenable by arthroscopic and endoscopic extensions. The recent 5 years (2019–2023) research and developments have been incorporated in the following literature.
Keywords: Arthroscopic assisted shoulder surgeries, Shoulder endoscopy.


References

1. Polio W, Brolin TJ. Remplissage for anterior shoulder instability: History, indications, and outcomes. Orthop Clin North Am 2022;53:327-38.
2. McQuivey KS, Brinkman JC, Tummala SV, Shaha JS, Tokish JM. Arthroscopic remplissage using knotless, all-suture anchors. Arthrosc Tech 2022;11:e615-21.
3. Kim DH, Kim JY, Park J, Talwar M, Jenkins S, Gardner B, et al. Combined double-pulley remplissage and bankart repair. Arthrosc Tech 2022;11:e419-25.
4. Charalambous CP. Editorial commentary: Double-pulley remplissage using transtendon anchors: Keep it simple. Arthroscopy 2022;38:750-1.
5. Callegari JJ, Phillips CJ, Denard PJ. All-inside knotless remplissage technique. Arthrosc Tech 2021;10:e1479-84.
6. Hurley ET, Toale JP, Davey MS, Colasanti CA, Pauzenberger L, Strauss EJ, et al. Remplissage for anterior shoulder instability with Hill-Sachs lesions: A systematic review and meta-analysis. J Shoulder Elbow Surg 2020;29:2487-94.
7. Lho T, Lee J, Oh KS, Chung SW. Latarjet procedure for failed Bankart repair provides better stability and return to sports, but worse postoperative pain and external rotation limitations with more complications, compared to revision Bankart repair: A systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2023;31:3541-58.
8. Bauer S, Dietz B, Collin P, Neyton L, Blakeney W, Zumstein M. Open Latarjet-patte-procedure with Walch’s technique: Tips, tricks and avoidance of complications. Unfallchirurgie (Heidelb) 2023;126:155-60.
9. Boylan MR, Strauss EJ, Jazrawi LM, Virk MS. The Latarjet-Patte procedure past, present, and future. Bull Hosp Jt Dis (2013) 2022;80:80-7.
10. Imam MA, Shehata MS, Martin A, Attia H, Sinokrot M, Bahbah EI, et al. Bankart repair versus Latarjet procedure for recurrent anterior shoulder instability: A systematic review and meta-analysis of 3275 shoulders. Am J Sports Med 2021;49:1945-53.
11. Getz CL, Joyce CD. Arthroscopic Latarjet for shoulder instability. Orthop Clin North Am 2020;51:373-81.
12. Woodmass JM, Wagner ER, Solberg M, Hunt TJ, Higgins LD. Latarjet procedure for the treatment of anterior glenohumeral instability. JBJS Essent Surg Tech 2019;9:e31.
13. LeVasseur MR, Mancini MR, Hawthorne BC, Romeo AA, Calvo E, Mazzocca AD. SLAP tears and return to sport and work: Current concepts. J ISAKOS 2021;6:204-11.
14. Belk JW, Thon SG, Hart J, McCarty EC Jr., McCarty EC. Subpectoral versus suprapectoral biceps tenodesis yields similar clinical outcomes: A systematic review. J ISAKOS 2021;6:356-62.
15. Recker AJ, Waters TL, Bullock G, Rosas S, Scholten DJ 2nd, Nicholson K, et al. Biceps tenodesis has greater expected value than repair for isolated type II SLAP Tears: A meta-analysis and expected-value decision analysis. Arthroscopy 2022;38:2887-96.
16. Shin MH, Baek S, Kim TM, Kim H, Oh KS, Chung SW. Biceps tenodesis versus superior labral anterior and posterior (SLAP) Lesion repair for the treatment of SLAP lesion in overhead athletes: A systematic review and meta-analysis. Am J Sports Med 2022;50:3987-97.
17. Hassebrock JD, Stokes DJ, Cram TR, Frank RM. Arthroscopic repair and reconstruction of coracoclavicular ligament. Clin Sports Med 2023;42:599-611.
18. Fandridis EΜ, Zampeli F, Dimakopoulos P. Arthroscopically assisted double-loop suture repair for acute acromioclavicular joint disruption. Arthrosc Tech 2022;11:e937-46.
19. Srimongkolpitak S, Apivatgaroon A, Chernchujit B, Atiprayoon S. Arthroscopic-assisted coracoclavicular stabilization with anchorless transosseous double-row acromioclavicular ligament complex repair: The acute acromioclavicular joint dislocation. Arthrosc Tech 2022;11:e1649-59.
20. Maia Dias C, Leite MJ, Ribeiro da Silva M, Granate P, Manuel Teixeira J. Arthroscopic anatomical acromioclavicular joint reconstruction using a button device and a semitendinosus graft. Orthop Surg 2022;14:605-12.
21. Teixeira Ramos J, Silva Gomes D, Quinaz Neto P, Sarmento M, Moura N, Cartucho A. Arthroscopic-assisted acromioclavicular joint dislocation repair: A modified technique for horizontal stabilization using suture anchors. Arthrosc Tech 2021;10:e283-8.
22. Sachinis NP, Papagiannopoulos S, Sarris I, Papadopoulos P. Outcomes of arthroscopic nerve release in patients treated for large or massive rotator cuff tears and associated suprascapular neuropathy: A prospective, randomized, double-blinded clinical trial. Am J Sports Med 2021;49:2301-8.
23. Arce G, Calvo A, Golano P. Suprascapular nerve release: Technique based on anatomic landmarks. Arthrosc Tech 2021;10:e469-73.
24. Gerber C, Meyer DC, Wieser K, Sutter R, Schubert M, Kriechling P. Suprascapular nerve decompression in addition to rotator cuff repair: A prospective, randomized observational trial. J Shoulder Elbow Surg 2020;29:1633-41.
25. Ma HH, Wu WT, Tsai IC, Chang KV. Does suprascapular nerve release provide additional benefits for rotator cuff repair: A systematic review and meta-analysis. J Shoulder Elbow Surg 2022;31:2421-30.
26. Ahmed AS, Lafosse T, Graf AR, Karzon AL, Gottschalk MB, Wagner ER. Modern treatment of neurogenic thoracic outlet syndrome: Pathoanatomy, diagnosis, and arthroscopic surgical technique. J Hand Surg Glob Online 2023;5:561-76.
27. Ahmed AS, Graf AR, Karzon AL, Graulich BL, Egger AC, Taub SM, et al. Pectoralis minor syndrome – review of pathoanatomy, diagnosis, and management of the primary cause of neurogenic thoracic outlet syndrome. JSES Rev Rep Tech 2022;2:469-88.
28. Diner C, Mathieu L, Vandendries C, Oberlin C, Belkheyar Z. Elective brachial plexus decompression in neurogenic thoracic outlet syndrome. Hand Surg Rehabil 2023;42:9-14.
29. Venkatramani H, Bhardwaj P, Raja Sabapathy S, Bandari G, Zhang D, Dheenadhayalan J. Floating shoulder injury resulting in delayed onset of infraclavicular brachial plexus palsy. J Hand Surg Asian Pac Vol 2020;25:499-503.
30. Bader D, Lafosse T, Garcia JC Jr. Endoscopic release of the brachial plexus. Arthrosc Tech 2020;9:e1565-9.
31. Reinares F, Calvo A, Bernal N, Lizama P, Valenti P, Toro F. Arthroscopic-assisted latissimus dorsi transfer for irreparable posterosuperior cuff tears: Clinical outcome of 15 patients. Eur J Orthop Surg Traumatol 2022;32:667-74.
32. Osti L, Buda M, Andreotti M, Gerace E, Osti R, Massari L, et al. Arthroscopic-assisted latissimus dorsi transfer for massive rotator cuff tear: A systematic review. Br Med Bull 2018;128:23-35.
33. Ghoraishian M, Stone MA, Elhassan B, Abboud J, Namdaria S. Techniques for lower trapezius tendon transfer for the management of irreparable posterosuperior rotator cuff tears. J Orthop 2020;22:331-5.
34. Gambhir N, Alben MG, Kim MT, Pines Y, Virk MS, Kwon YW. Outcomes after arthroscopic scapulothoracic bursectomy for the treatment of symptomatic snapping scapula syndrome. JSES Int 2022;6:1042-7.
35. Ganokroj P, Yamaura K, Mologne MS, Whalen RJ, Provencher MT. Combined arthroscopic scapulothoracic bursectomy, partial scapulectomy, and pectoralis minor release for the treatment of snapping scapular syndrome. Arthrosc Tech 2023;12:e1051-6.

How to Cite this article: Vishwakarma N, Biraris S. Surge of Arthroscopic Assisted and Endoscopic Surgical Universe in Arthroscopic Shoulder Metaverse. Journal of Clinical Orthopaedics 2023;8(2)54-56.

(Abstract Text HTML)   (Download PDF)