Posts

The Efficacy of High Tibial Osteotomy with or without Post-root Medial Meniscus Repair: A Systematic Review

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 80-84 | Aishwarya Roy, Kiran Kumari, Miten Sheth

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.610


Authors: Aishwarya Roy [1], Kiran Kumari [2], Miten Sheth [1]

[1] Third Year Junior Resident in Seth GS Medical College & KEM Hospital, Mumbai, India,

[2] Postgraduate student, Msc Public Health, University of Bristol, United Kingdom.

Address of Correspondence
Dr. Aishwarya Roy,
16/2 P. majumder Road Kolkata -700078, India.
E-mail: ash46roy@gmail.com


Abstract

Background: High tibial osteotomy (HTO) is a knee joint treatment modality for medial compartment arthritis, aiming to improve articular cartilage healing by shifting the lower limb’s axis. It is commonly used in younger patients with pain and active lifestyles, preventing advanced cartilage deterioration. Varus malalignment may often be accompanied with medial meniscus root tears. In recent years, meniscus root tears are often been repaired. However, the efficacy of medial meniscus repairs with high tibial in varus malalignment with medial meniscal tears remains a controversy.
Purpose: The purpose is to study the functional outcomes of concurrent medial meniscus root repair with HTO versus HTO alone.
Study design: Systematic review.
Methods: According to Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines, we searched PubMed, Embase, Web of Science, and the Cochrane Library databases for studies reporting the outcomes of medial meniscus posterior root tear (MMPRT) repair with HTO versus HTO alone and extracted data about characteristics of patients, clinical functional scores, and radiologic outcomes. One reviewer extracted data and 1 reviewer assessed the risk of bias and performed a synthesis of the evidence. Articles were eligible if they reported the functional outcome of HTO alone or HTO and MMPRT repair in patients of varus malalignment and medial meniscus root tears.
Results: 6 studies with 264 patients were identified. Data from these studies were segregated in HTO only and HTO with medial meniscus repair group. The findings of this systematic review suggest that the outcomes of HTO with MMPHRR and of only HTO are not statistically significant, meaning that doing valgus osteotomy only in patients with varus knee and MMPHRT can give good results regardless of not repairing the meniscus.
Conclusion: HTO with medial meniscus posterior horn root repair seems to have no significant improvement in the functional outcomes of the patient. However, long-term studies need to be performed.
Keywords: High tibial osteotomy, medial meniscus, root repair, arthroscopy, varus malalignment, meniscus, root tear


References

1. Ke, Xiurong et al. “Concurrent arthroscopic meniscal repair during open-wedge high tibial osteotomy is not clinically beneficial for medial meniscus posterior root tears.” Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA vol. 29,3 (2021): 955-965. doi:10.1007/s00167-020-06055-9
2. Lee, Dhong Won et al. “Outcomes of Medial Meniscal Posterior Root Repair During Proximal Tibial Osteotomy: Is Root Repair Beneficial?.” Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association vol. 36,9 (2020): 2466-2475. doi:10.1016/j.arthro.2020.04.038
3. Jing, Lizhong et al. “Second-look arthroscopic findings after medial open-wedge high tibial osteotomy combined with all-inside repair of medial meniscus posterior root tears.” Journal of orthopaedic surgery (Hong Kong) vol. 28,1 (2020): 2309499019888836. doi:10.1177/2309499019888836
4. Suh, Dong Won et al. “Simple Medial Meniscus Posterior Horn Root Repair Using an All-Inside Meniscal Repair Device Combined with High Tibial Osteotomy to Maintain Joint-Space Width in a Patient with a Repairable Tear.” Indian journal of orthopaedics vol. 55,2 397-404. 31 Aug. 2020, doi:10.1007/s43465-020-00234-z
5. Kim YM, Joo YB, Lee WY, Kim YK. Remodified Mason-Allen suture technique concomitant with high tibial osteotomy for medial meniscus posterior root tears improved the healing of the repaired root and suppressed osteoarthritis progression. Knee Surg Sports Traumatol Arthrosc 2020;29:1258-68.
6. Omae, Hiroaki et al. “Arthroscopic pullout repair versus suture anchor repair for medial meniscus posterior root tear combined with high tibial osteotomy.” The Knee vol. 45 (2023): 117-127. doi:10.1016/j.knee.2023.10.011
7. Lee OS, Lee SH, Lee YS. Comparison of the radiologic, arthroscopic, and clinical outcomes between repaired versus unrepaired medial meniscus posterior horn root tear during open wedge high tibial osteotomy. J Knee Surg 2019;34:57-66.
8. Jing L, Liu K, Wang X, Wang X, Li Z, Zhang X, et al. Second-look arthroscopic findings after medial open-wedge high tibial osteotomy combined with all-inside repair of medial meniscus posterior root tears. J Orthop Surg (Hong Kong) 2019;28:230949901988883.
9. Ke X, Qiu J, Chen S, Sun X, Wu F, Yang G, et al. Concurrent arthroscopic meniscal repair during open-wedge high tibial osteotomy is not clinically beneficial for medial meniscus posterior root tears. Knee Surg Sports Traumatol Arthrosc 2020;29:955-645.
10. Kim KI, Bae JK, Jeon SW Kim GB. Medial meniscus posterior root tear does not affect the outcome of medial open-wedge high tibial osteotomy. J Arthroplasty 2021;36:423-8.
11. Omae H, Yanagisawa S, Hagiwara K, Ogoshi A, Omodaka T, Kimura M. Arthroscopic pullout repair versus suture anchor repair for medial meniscus posterior root tear combined with high tibial osteotomy. Knee 2023;45:117-27.
12. Lee HI, Park D, Cho J. Clinical and radiological results with second-look arthroscopic findings after open wedge high tibial osteotomy without arthroscopic procedures for medial meniscal root tears. Knee Surg Relat Res 2018;30:34-41.
13. Suh DW, Yeo WJ, Han SB, So SY, Kyung BS. Simple medial meniscus posterior horn root repair using an all-inside meniscal repair device combined with high tibial osteotomy to maintain joint-space width in a patient with a repairable tear. Indian J Orthop 2020;55:397-404.
14. Bin SI, Kim JM, Shin SJ. Radial tears of the posterior horn of the medial meniscus. Arthroscopy 2004;20:373-8.
15. Lee OS, Ahn S, Lee YS. Effect and safety of early weight-bearing on the outcome after open-wedge high tibial osteotomy: A systematic review and meta-analysis. Arch Orthop Trauma Surg 2017;137:903-11.

How to Cite this article: Roy A, Kumari K. The Efficacy of High Tibial Osteotomy with or without Post-root Medial Meniscus Repair: A Systematic Review. Journal of Clinical Orthopaedics 2023;8(2):80-84.

(Abstract Text HTML)  (Download PDF)


Invasive Non-Arthroplasty Treatment Options for Knee Osteoarthritis: Review

Journal of Clinical Orthopaedics | Vol 8 | Issue 1 |  Jan-Jun 2023 | page: 08-17 | Rohan G Reddy, YuChia Wang, Ryan Scully, Savyasachi C Thakkar

DOI: :10.13107/jcorth.2023.v08i01.549


Author: Rohan G Reddy [1], YuChia Wang [2], Ryan Scully [3], Savyasachi C Thakkar [4]

[1] Orthopaedic Research Collaborative (ORC); Johns Hopkins University, Baltimore, Maryland, United States, ,
[2] Orthopaedic Research Collaborative (ORC);Department of Orthopaedic Surgery, Eastern Virginia Medical School, Norfolk, Virginia, United States,
[3] Orthopaedic Research Collaborative (ORC); Department of Orthopaedic Surgery, Naval Hospital Camp Pendleton, Oceanside, California, United States,

[4] Orthopaedic Research Collaborative (ORC); Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland, United States.

Address of Correspondence
Dr. Rohan G Reddy,

Johns Hopkins University, Baltimore, Maryland, United States.

E-mail: rreddy19@jhu.edu


Abstract

Introduction: Knee osteoarthritis (KOA) is one of the most common joint diseases in the world, such that there exists a variety of treatment methods, ranging from conservative treatments such as physical therapy and weight loss to total replacement of the diseased joint. Invasive non-arthroplasty treatment methods are growing in popularity and this review aims to explore the current literature. Better understanding of these alternatives could allow orthopedic surgeons and primary care providers to offer poor arthroplasty candidates meaningful symptomatic relief.

Materials and Methods: A literature review using PubMed, Google Scholar, and SCOPUS was performed to examine the following invasive non-arthroplasty treatment options: Corticosteroid injections (CS), viscosupplementation, platelet-rich plasma injections, stem cell injections, ozone therapy, prolotherapy, radiofrequency nerve ablation (RFA), arthroscopy, and osteotomy. Articles with complete data on the outcomes following these treatment methods were included in the study.

Results: CSs showed strong efficacy in providing short-term pain relief, while viscosupplementation and platelet-rich plasma have shown to be effective in long-term management as well. Aside from the more common injectable treatment options, newer options such as stem cell injection and ozone therapy have shown clinical efficacy while prolotherapy and RFA are still early-stage treatment options. Still, further studies are required to better assess these emerging therapies. Operatively, arthroscopic surgery has shown to be minimally effective while osteotomy demonstrated effective pain and functional improvement.

Conclusion: Multiple therapeutic options exist for invasive management of KOA to a different degree of effectiveness and efficacy. We have analyzed the outcomes of multiple invasive non-arthroplasty treatment options for KOA. This review can better inform patients and surgeons of the pros and cons of different KOA treatment methods. Newer conservative options may have positive clinical implications but will require further investigation. Operative alternatives to arthroplasty can provide symptomatic relief but may increase the associated risk and complexity should the need for arthroplasty ever arises.

Keywords: Total knee arthroplasty, injections, radiofrequency nerve ablation, arthroscopy, osteotomy.


References

  1. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med 2010;26:355-69.
  2. Billesberger LM, Fisher KM, Qadri YJ, Boortz-Marx RL. Procedural treatments for knee osteoarthritis: A review of current injectable therapies. Pain Res Manag 2020;2020:3873098.
  3. Martin CL, Browne JA. Intra-articular corticosteroid injections for symptomatic knee osteoarthritis: What the orthopaedic provider needs to know. J Am Acad Orthop Surg 2019;27:e758-66.
  4. Kaplan DJ, Haskel JD, Kirby DJ, Bloom DA, Youm T. The simplified science of corticosteroids for clinicians. JBJS Rev2020;8:
  5. American Academy of Orthopaedic Surgeons. Management of Osteoarthritis of the Knee (Non-Arthroplasty) Evidence-Based Clinical Practice Guideline. 3rd United States: American Academy of Orthopaedic Surgeons; 2021. Available from: https://www.aaos.org/oak3cpg. Last accessed 25 Janurary 2023.
  6. Matzkin EG, Curry EJ, Kong Q, Rogers MJ, Henry M, Smith EL. Efficacy and treatment response of intra-articular corticosteroid injections in patients with symptomatic knee osteoarthritis. J Am Acad Orthop Surg2017;25:703-14.
  7. Najm A, Alunno A, Gwinnutt JM, Weill C, Berenbaum F. Efficacy of intra-articular corticosteroid injections in knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Joint Bone Spine 2021;88:105198.
  8. WerneckeC, BraunHJ, DragooJL. The effect of intra-articular corticosteroids on articular cartilage: A systematic review. Orthop J Sports Med2015;3.
  9. McAlindon TE, LaValley MP, Harvey WF, Price LL, Driban JB, Zhang M, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: A randomized clinical trial. JAMA 2017;317:1967-75.
  10. Altman R, Hackel J, Niazi F, Shaw P, Nicholls M. Efficacy and safety of repeated courses of hyaluronic acid injections for knee osteoarthritis: A systematic review. Semin Arthritis Rheum 2018;48:168-75.
  11. Tang JZ, Nie MJ, Zhao JZ, Zhang GC, Zhang Q, Wang B. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: A meta-analysis. J Orthop Surg Res 2020;15:403.
  12. Navarro-Sarabia F, Coronel P, Collantes E, Navarro FJ, de la Serna AR, Naranjo A, et al. A 40-month multicentre, randomised placebo-controlled study to assess the efficacy and carry-over effect of repeated intra-articular injections of hyaluronic acid in knee osteoarthritis: The AMELIA project. Ann rheum Dis 2011;70:1957-62.
  13. He W, Kuang M, Zhao J, Sun L, Lu B, Wang Y, et al. Efficacy and safety of intraarticular hyaluronic acid and corticosteroid for knee osteoarthritis: A meta-analysis. Int J Surg 2017;39:95-103.
  14. Smith C, Patel R, Vannabouathong C, Sales B, Rabinovich A, McCormack R, et al. Combined intra-articular injection of corticosteroid and hyaluronic acid reduces pain compared to hyaluronic acid alone in the treatment of knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2018;27:1974-83.
  15. Concoff A, Sancheti P, Niazi F, Shaw P, Rosen J. The efficacy of multiple versus single hyaluronic acid injections: A systematic review and meta-analysis. BMC Musculoskelet Disord2017;18:
  16. Tan J, Chen H, Zhao L, Huang W. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: A meta-analysis of 26 randomized controlled trials. Arthroscopy 2021;37:309-25.
  17. Richardson SS, Schairer WW, Sculco TP, Sculco PK. Comparison of infection risk with corticosteroid or hyaluronic acid injection prior to total knee arthroplasty. J Bone Joint Surg Am 2019;101:112-8.
  18. Peck J, Slovek A, Miro P, Vij N, Traube B, Lee C, et al. A comprehensive review of viscosupplementation in osteoarthritis of the knee. Orthop Rev (Pavia) 2021;13:25549.
  19. Sundman EA, Cole BJ, Karas V, Valle CD, Tetreault MW, Mohammed MO, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med 2014;42:35-41.
  20. Buul G, Koevoet W, Kops N, Bos PK, Verhaar JA, Weinans H, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med 2011;39:2362-70.
  21. Hong M, Cheng C, Sun X, Yan Y, Zhang Q, Wang W, et al. Efficacy and safety of intra-articular platelet-rich plasma in osteoarthritis knee: A systematic review and meta-analysis. Biomed Res Int 2021;2021:2191926.
  22. Raeissadat SA, Rayegani SM, Hassanabadi H, Fathi M, Ghorbani E, Babaee M, et al. Knee osteoarthritis injection choices: Platelet- rich plasma (PRP) versus hyaluronic acid (A one-year randomized clinical trial). Clin Med Insights Arthritis Musculoskelet Disord 2015;2015:1-8.
  23. UsluGüvendi  E, Aşkin A, Güvendi G, Koçyiğit H. Comparison of efficiency between corticosteroid and platelet rich plasma injection therapies in patients with knee osteoarthritis. Arch Rheumatol2018;33:273-81.
  24. Shen L, Yuan T, Chen S, Xie X, Zhang C. The temporal effect of platelet-rich plasma on pain and physical function in the treatment of knee osteoarthritis: Systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res2017;12:
  25. McLarnon M, Heron N. Intra-articular platelet-rich plasma injections versus intra-articular corticosteroid injections for symptomatic management of knee osteoarthritis: Systematic review and meta-analysis. BMC Musculoskelet Disord 2021;22.
  26. Xu Z, He Z, Shu L, Li X, Ma M, Ye C. Intra-articular platelet-rich plasma combined with hyaluronic acid injection for knee osteoarthritis is superior to platelet-rich plasma or hyaluronic acid alone in inhibiting inflammation and improving pain and function. Arthroscopy 2021;37:903-15.
  27. Karasavvidis T, Totlis T, Gilat R, Cole BJ. Platelet-rich plasma combined with hyaluronic acid improves pain and function compared with hyaluronic acid alone in knee osteoarthritis: A systematic review and meta-analysis. Arthroscopy 2021;37:1277-87.e1.
  28. Aw AA, Leeu JJ, Tao X, Razak HR. Comparing the efficacy of dual platelet-rich plasma (PRP) and hyaluronic acid (HA) therapy with PRP-alone therapy in the treatment of knee osteoarthritis: A systematic review and meta-analysis. J Exp Orthop 2021;8:101.
  29. Piuzzi NS, Ng M, Kantor A, Ng K, Kha S, Mont MA, et al. What is the price and claimed efficacy of platelet-rich plasma injections for the treatment of knee osteoarthritis in the United States? J Knee Surg 2019;32:879-85.
  30. Lee JS, Shim DW, Kang KY, Chae DS, Lee WS. Method categorization of stem cell therapy for degenerative osteoarthritis of the knee: A review. Int J Mol Sci 2021;22.
  31. Song Y, Du H, Dai C, Zhang L, Li S, Hunter DJ, et al. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen Med 2018;13:295-307.
  32. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265-72.
  33. Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal stem cell therapy for osteoarthritis: The critical role of the cell secretome. Front Bioeng Biotechnol2019;7..
  34. Bastos R, Mathias M, Andrade R, Amaral RJ, Schott V, Balduino A, et al. Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: A controlled, double-blind clinical trial. Knee Surg Sports Traumatol Arthrosc 2020;28:1989-99.
  35. Lee WS, Kim HJ, Kim KI, Kim GB, Jin W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: A phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med 2019;8:504-11.
  36. Song Y, Zhang J, Xu H, Lin Z, Chang H, Liu W, et al. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis. J Orthop Translat 2020;24:121-30.
  37. Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Núñez-Córdoba JM, López-Elío S, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). J Transl Med 2018;16.
  38. Momaya AM, McGee AS, Dombrowsky AR, Wild AJ, Faroqui NM, Waldrop RP, et al. The cost variability of orthobiologics. Sports Health 2020;12:94-8.
  39. Sconza C, Respizzi S, Virelli L, Vandenbulcke F, Iacono F, Kon E, et al. Oxygen-Ozone therapy for the treatment of knee osteoarthritis: A systematic review of randomized controlled trials. Arthroscopy 2020;36:277-86.
  40. Costa T, Rodrigues-Manica S, Lopes C, Gomes J, Marona J, Falcão S, et al. Ozone therapy in knee osteoarthritis: A systematic review. Acta Med Port 2018;31:576-80.
  41. De Jesus CC, DosSantos FC, deJesus LM, MonteiroI, Sant’AnaMS, TrevisaniVF. Comparison between intra-articular ozone and placebo in the treatment of knee osteoarthritis: A randomized, double-blinded, placebo-controlled study.PLoS One2017;12:
  42. Raeissadat SA, Hosseini PG, Bahrami MH, Roghani RS, Fathi M, Ahangar AG, et al. The comparison effects of intra-articular injection of platelet rich plasma (PRP), plasma rich in growth factor (PRGF), hyaluronic acid (HA), and ozone in knee osteoarthritis; a one year randomized clinical trial. BMC Musculoskelet Disord 2021;22:134.
  43. Duymus TM, Mutlu S, Dernek B, Komur B, Aydogmus S, Kesiktas FN. Choice of intra-articular injection in treatment of knee osteoarthritis: Platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sports Traumatol Arthrosc 2017;25:485-92.
  44. Giombini A, Menotti F, Di Cesare A, Giovannangeli F, Rizzo M, Moffa S, et al. Comparison between intrarticular injection of hyaluronic acid, oxygen ozone, and the combination of both in the treatment of knee osteoarthrosis. J Biol Regul Homeost Agents 2016;30:621-5.
  45. Sert AT, Sen EI, Esmaeilzadeh S, Ozcan E. The effects of dextrose prolotherapy in symptomatic knee osteoarthritis: A randomized controlled study. J Altern Complement Med 2020;26:409-17.
  46. Sit RW, Wu RW, Rabago D, Reeves KD, Chan DC, Yip BH, et al. Efficacy of intra-articular hypertonic dextrose (prolotherapy) for knee osteoarthritis: A randomized controlled trial. Ann Fam Med 2020;18:235-42.
  47. Rabago D, Mundt M, Zgierska A, Grettie J. Hypertonic dextrose injection (prolotherapy) for knee osteoarthritis: Long term outcomes. Complement Ther Med 2015;23:388-95.
  48. Arias-Vázquez PI, Tovilla-Zárate CA, Legorreta-Ramírez BG, Fonz WB, Magaña-Ricardez D, González-Castro TB, et al. Prolotherapy for knee osteoarthritis using hypertonic dextrose vs other interventional treatments: Systematic review of clinical trials. Adv Rheumatol 2019;59:39.
  49. Iannaccone F, Dixon S, Kaufman A. A review of long-term pain relief after genicular nerve radiofrequency ablation in chronic knee osteoarthritis. Pain Physician 2017;20:E437-44.
  50. Kapural L, Deering JP. A technological overview of cooled radiofrequency ablation and its effectiveness in the management of chronic knee pain. Pain Manag 2020;10:133-40.
  51. Kocayiğit H, Beyaz SG. Comparison of cooled and conventional radiofrequency applications for the treatment of osteoarthritic knee pain. J Anaesthesiol Clin Pharmacol 2021;37:464-8.
  52. Stake S, Agarwal AR, Coombs S, Cohen JS, Golladay GJ, Campbell JC, et al. Total knee arthroplasty after genicular nerve radiofrequency ablation: Reduction in prolonged opioid use without increased postsurgical complications. J Am Acad Orthop Surg Glob Res Rev 2022;6:e22.00125.
  53. Mishra P, Edwards D, Huntoon M, Sobey C, Polkowski G, Corey J, et al. Is preoperative genicular radiofrequency ablation effective for reducing pain following total knee arthroplasty? A pilot randomized clinical trial. Reg Anesth Pain Med 2021;46:752-6.
  54. Qudsi-Sinclair S, Borrás-Rubio E, Abellan-Guillén JF, Del Rey ML, Ruiz-Merino G. A comparison of genicular nerve treatment using either radiofrequency or analgesic block with corticosteroid for pain after a total knee arthroplasty: A double-blind, randomized clinical study. Pain Pract2017;17:578-88.
  55. Protzman NM, Gyi J, Malhotra AD, Kooch JE. Examining the feasibility of radiofrequency treatment for chronic knee pain after total knee arthroplasty. PM R2014;6:373-6.
  56. Hunter C, Davis T, Loudermilk E, Kapura lL, DePalma M. Cooled radiofrequency ablation treatment of the genicular nerves in the treatment of osteoarthritic knee pain: 18- and 24-month results. Pain Pract 2020;20:238-46.
  57. Chen A, Khalouf F, Zora K, DePalma M, Kohan L, Guirguis M, et al. Cooled radiofrequency ablation compared with a single injection of hyaluronic acid for chronic knee pain: A multicenter, randomized clinical trial demonstrating greater efficacy and equivalent safety for cooled radiofrequency ablation. J Bone Joint Surg Am 2020;102:1501-10.
  58. Elawamy A, Kamel EZ, Mahran SA, Abdellatif H, Hassanien M. Efficacy of genicular nerve radiofrequency ablation versus intra-articular platelet rich plasma in chronic knee osteoarthritis: A single-blind randomized clinical trial. Pain Physician 2021;24:127-34.
  59. Felson DT. Arthroscopy as a treatment for knee osteoarthritis. Best Pract Res Clin Rheumatol 2009;24:47-50.
  60. Krych AJ, Bert JM, Levy BA. Treatment of OA of the knee in the middle-aged athlete: The role of arthroscopy. Sports Med Arthrosc Rev2013;21:23-30.
  61. Brophy RH, Fillingham YA. AAOS clinical practice guideline summary: Management of osteoarthritis of the knee (Nonarthroplasty), Third Edition. J Am Acad Orthop Surg 2022;30:e721-9.
  62. Spahn G, Mückley T, Kahl E, Hofmann GO. Factors affecting the outcome of arthroscopy in medial-compartment osteoarthritis of the knee. Arthroscopy 2006;22:1233-40.
  63. Dearing J, Nutton RW. Evidence based factors influencing outcome of arthroscopy in osteoarthritis of the knee. Knee 2008;15:159-63.
  64. Brignardello-Petersen R, Guyatt GH, Buchbinder R, Poolman RW, Schandelmaier S, Chang Y, et al. Knee arthroscopy versus conservative management in patients with degenerative knee disease: A systematic review. BMJ Open 2017;7:e016114.
  65. Delva ML, Samuel LT, Roth A, Yalçin S, Kamath AF. Contemporary knee osteotomy in the United States: High tibial osteotomy and distal femoral osteotomy have comparable complication rates despite differing demographic profiles. J Knee Surg 2021;34:816-21.
  66. Wang JW, Hsu CC. Distal femoral varus osteotomy for osteoarthritis of the knee. Surgical technique. J Bone Joint Surg Am 2006;88 Suppl 1 Pt 1:100-8.
  67. Pornrattanamaneewong C, Ruangsomboon P, Narkbunnam R, Chareancholvanich K. Medial closing-wedge distal femoral varusosteotomy via lateral approach: The modified technique for treating valgus osteoarthritic knee as case series. Siriraj Medical Journal. 2022;74(11):747-753.
  68. Ren YM, Tian MQ, Duan YH, Sun YB, Yang T, Hou WY. Distal tibial tubercle osteotomy can lessen change in patellar height post medial opening wedge high tibial osteotomy? A systematic review and meta-analysis. J Orthop Surg Res 2022;17:
  69. Amendola A, Bonasia DE. Results of high tibial osteotomy: Review of the literature. Int Orthop 2009;34:155-60.
  70. LaPrade RF, Spiridonov SI, Nystrom LM, Jansson KS. Prospective outcomes of young and middle-aged adults with medial compartment osteoarthritis treated with a proximal tibial opening wedge osteotomy. Arthroscopy 2012;28:354-64.
  71. Kunze KN, Beletsky A, Hannon CP, LaPrade RF, Yanke AB, Cole BJ, et al. Return to work and sport after proximal tibial osteotomy and the effects of opening versus closing wedge techniques on adverse outcomes: A systematic review and meta-analysis. Am J Sports Med 2020;48:2295-304.
  72. Ekhtiari S, Haldane CE, deSa D, Simunovic N, Musah lV, Ayeni OR. Return to work and sport following high tibial osteotomy: A systematic review. J Bone Joint Surg Am 2016;98:1568-77.
  73. Jackson JP, Waugh W. Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br 1961;43-B:746-51.
  74. Aglietti P, Buzzi R, Vena LM, Baldini A, Mondaini A. High tibial valgus osteotomy for medial gonarthrosis: A 10- to 21-year study. J Knee Surg 2003;16:21-6.
  75. Sprenger TR, Doerzbacher JF. Tibial osteotomy for the treatment of varus gonarthrosis. Survival and failure analysis to twenty-two years. J Bone Joint Surg Am 2003;85:469-74.
  76. Wu L, Hahne HJ, Hassenpflug T. Long-term follow-up study of high tibial osteotomy for medial compartment osteoarthrosis. Chin J Traumatol 2004;7:348-53.
  77. Bonasia DE, Dettoni F, Sito G, Blonna D, Marmotti A, Bruzzone M, et al. Medial opening wedge high tibial osteotomy for medial compartment overload/arthritis in the varus knee. Am J Sports Med 2014;42:690-8.
  78. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P. Does obesity and nicotine abuse influence the outcome and complication rate after open-wedge high tibial osteotomy? A retrospective evaluation of five hundred and thirty three patients. Int Orthop 2014;38:55-60.
  79. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P. Outcome after high tibial open-wedge osteotomy: A retrospective evaluation of 533 patients. Knee Surg Sports Traumatol Arthrosc 2013;21:170-80.
  80. Salzmann GM, Ahrens P, Naal FD, El-Azab H, Spang JT, Imhoff AB, et al. Sporting activity after high tibial osteotomy for the treatment of medial compartment knee osteoarthritis. Am J Sports Med 2009;37:312-8.
  81. Schuster P, Geßlein M, Schlumberger M, Mayer P, Mayr R, Oremek D, et al. Ten-year results of medial open-wedge high tibial osteotomy and chondral resurfacing in severe medial osteoarthritis and varus malalignment. Am J Sports Med 2018;46:1362-70.
  82. Dugdale TW, Noyes FR, Styer D. Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res1992;274:248-64.
  83. Kosashvili Y, Safir O, Gross A, Morag G, Lakstein D, Backstein D. Distal femoral varus osteotomy for lateral osteoarthritis of the knee: A minimum ten-year follow-up. Int Orthop 2010;34:249-54.
  84. Coventry M. Osteotomy about the knee for degenerative and rheumatoid arthritis. J Bone Joint Surg Am 1973;55:23-48.
  85. Buda R, Castagnini F, Gorgolini G, Baldassarri M, Vannini F. Distal femoral medial closing wedge osteotomy for degenerative valgus knee: Mid-term results in active patients. Acta Orthop Belg 2017;83:140-5.

 

How to Cite this article: Reddy RG, Wang Y, Scully R, Thakkar SC. Invasive Non-arthroplasty Treatment Options for Knee Osteoarthritis: Review. Journal of Clinical Orthopaedics Jan-Jun 2023;8(1):08-17.

 (Abstract    Full Text HTML)   (Download PDF)


Unusual Finding of Gouty Tophus in Adult Male with Acute Locked Knee: A Rare Case Report

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 42-44 | Febyan, I Gusti Ngurah Paramartha Wijaya Putra, Made Deker, Agus Eka Wiradiputra


Author: Febyan [1], I Gusti Ngurah Paramartha Wijaya Putra [1], Made Deker [1], Agus Eka Wiradiputra [1]

[1] Department of Orthopaedics & Traumatology, Bhayangkara Denpasar Hospital, Bali, Indonesia

Address of Correspondence
Dr. Febyan,
Department of Orthopaedics & Traumatology, Bhayangkara Denpasar Hospital, Bali, Indonesia
E-mail: febyanmd@gmail.com


Abstract

Gout is an inflammatory disease commonly characterized by tophus deposits containing uric acid crystals in the intraarticular joints. An acute locked joint due to gouty tophus formation is a rare finding. This case describes a 36-year-old man with sudden pain and locking in the knee joint. Physical examination, plain radiography, and serum uric acid examination showed unremarkable results. Further investigation with diagnostic arthroscopy confirmed tophaceous gout as the sole cause of an acutely locked knee. The patient exhibited satisfactory clinical results following surgical intervention under arthroscopy and the administration of urate-lowering agents. This case highlights the probability of tophus deposition as the cause of an acute locked knee, despite unremarkable initial presentation. The awareness regarding this case should be raised, especially on emphasizing arthroscopy as a cost-effective diagnostic and therapeutic modality in patient management.

Keywords: Arthroscopy, gouty tophi, knee joint, rare case


References

1. Ozturk R, Atalay IB, Bulut EK, Beltir G, Yilmaz S, Gungor BS. Place of orthopedic surgery in gout. Eur J Rheumatol 2019;6(4):212-5.
2. Dehlin M, Drivelegka P, Sigurdardottir V, Svärd A, Jacobsson LT. Incidence and prevalence of gout in Western Sweden. Arthritis Res Ther 2016;18:164.
3. Mohd A, Gupta Ed, Loh Y, Gandhi C, D’Souza B, Gun S. Clinical characteristics of gout: a hospital case series. Malays Fam Physician 2011;6(2-3):72-3.
4. Amber H. Singh VA, Azura M. Gouty tophi mimicking synovial sarcoma of the knee joint. Arch of Rheumatol 2012;27(3):208-11.
5. Ashar NAK, Hussin P, Nasir MNM, Mawardi M. Degenerative osteophyte causing acute locked knee in a young man: a case report. Malays J Med Sci 2019;15(3):161-3. .
6. Bansal P, Deehan DJ, Gregory RJH. Diagnosing the acutely locked knee. Injury 2002;33(6):495-8.
7. Hwang HJ, Lee SH, Han SB, Park SY, Jeong WK, Kim CH, et al. Anterior cruciate ligament rupture in gouty arthritis. Knee Surg Sports Traumatol Arthrosc 2012;20(8):1540-2.
8. Wong JK, Chan WH. Giant cell tumor of the tendon sheath arising from anterior cruciate ligament. New Horiz Clin Case Rep 2017;2:31.
9. Chatterjee S, Ilaslan H. Painful knee locking caused by gouty tophi successfully treated with allopurinol. Nat Clin Pract Rheumatol 2008;4(12):675-9.
10. Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective – Areview. J Adv Res 2017;8(5):495-511.
11. McQueen FM, Chhana A, Dalbeth N. Mechanisms of joint damage in gout: evidence from cellular and imaging studies. Nat Rev Rheumatol 2012;8(3):173-81.
11. Melloni P, Valls R, Yuguero M, Sáez A. An unusual case of tophaceous gout involving the anterior cruciate ligament. Arthroscopy 2004;20(9):e117-21.
13. Ko KH, Hsu YC, Lee HS, Lee CH, Huang GS. Tophaceous gout of the knee: revisiting MRI patterns in 30 patients. J Clin Rheumatol 2010;16(5):209-14.
14. Bloch C, Hermann G, Yu TF. A radiologic reevaluation of gout: a study of 2,000 patients. AJR Am J Roentgenol 1980;134(4):781-7.
15. Pan F, Li Q, Tang X, Xue J, Li J. Method and effectiveness of arthroscopic debridement for treating gouty arthritis of the knee. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi (Chinese Journal of Reparative and Reconstructive Surgery)
2011;25(8):937-40 (in Chinese).
16. Patel UJ, Freetly TJ, Yueh J, Campbell C, Kelly MA. Chronic tophaceous gout presenting as bilateral knee masses in an adult patient: a case report. J Orthop Case Rep 2019;9(5):16-9.

How to Cite this article: Febyan, Putra IGNPW, Deker M, Wiradiputra AE. Unusual Finding of Gouty Tophus in Adult Male with Acute Locked Knee: A Rare Case Report. Journal of Clinical Orthopaedics Jul-Dec 2021;6(2):42-44.

 (Abstract    Full Text HTML)   (Download PDF)


Partial Rotator Cuff Tears: a review of the literature

Journal of Clinical Orthopaedics | Vol 5 | Issue 2 |  July-Dec 2020 | page:30-34 | Stefania Kokkineli, Emmanouil Brilakis, Emmanouil Antonogiannakis


Author: Stefania Kokkineli [1], Emmanouil Brilakis [1], Emmanouil Antonogiannakis [1]

[1] Department of Orthopaedic, HYGEIA Hospital. MD. Erythrou Stavrou 4, Marousi 15123

Address of Correspondence
Dr. Stefania Kokkineli,
Department of Orthopaedic, HYGEIA Hospital. Athens, Greece
Address: Erythrou Stavrou 4, Marousi 15123. Greece
E-mail: stephaniekokkineli@gmail.com


Abstract

Partial- thickness rotator cuff tears are the most common cause of shoulder pain in adults and have been classified into subtypes according to location and depth. The frequency rate and tear size progression increase with age, tobacco use and medical comorbidities. Partial tears are divided into tears of acute, chronic or acute-on-chronic onset. Surgical treatment is indicated in symptomatic patients with persistent pain after failed conservative treatment of at least 3 months, mainly with tears that exceed 50% of the tendon thickness. Arthroscopic repair techniques include in situ and tear completion repair. Authors’ preferred technique for in situ repair is described followed by the postoperative rehabilitation protocol. The surgical techniques described have various advantages and disadvantages with regard to intra- operative complications, clinical outcomes, recovery time and re-tear rates which make it difficult to decide on which technique to use. The option is a matter of surgical indications, philosophy and skills.
Keywords: Partial-thickness rotator cuff tears, transtendon repair, in-situ repair, shoulder, arthroscopy


References

1. Kim, Y., S., Kim, S., E., Bae, S., H., Lee, H., J., Jee, W., H., Park, C. K. Tear progression of symptomatic full-thickness and partial-thickness rotator cuff tears as measured by repeated MRI. Knee Surg Sports Arthrosc. 2016;25(7), 2073–2080. doi:10.1007/s00167-016-4388-3.
2. Liu, C., T., Ge, H. an, Hu, R., Huang, J., B., Cheng, Y. C., Wang, M., et al. Arthroscopic knotless single-row repair preserving full footprint versus tear completion repair for partial articular-sided rotator cuff tear. J Orthop Surg. 2018;26(2):230949901877089. doi:10.1177/2309499018770897.
3. Salem, H., Carter, A., Tjoumakaris, F., Freedman, K., B. Double-Row Repair Technique for Bursal-Sided Partial-Thickness Rotator Cuff Tears. Arthrosc Tech. 2018;7(3):e199–e203. doi:10.1016/j.eats.2017.08.068.
4. Ellman H. Diagnosis and treatment of incomplete rotator cuff tears. Clin Orthop Relat Res. 1990;(254):64–74.
5. Fukuda, H. THE MANAGEMENT OF PARTIAL-THICKNESS TEARS OF THE ROTATOR CUFF. JBJS Br. 2013;85-B(1):3–11. doi:10.1302/0301-620x.85b1.13846.
6. Nathani, A., Smith, K., Wang, T. Partial and Full-Thickness RCT: Modern Repair Techniques. Curr Rev Musculoskelet Med. 2018;11(1):113–121. doi:10.1007/s12178-018-9465-4.
7. Vinanti, G., B., Rossato, A., Scrimieri, D., Petrera, M. Arthroscopic transtendon repair of partial articular-sided supraspinatus tendon avulsion. Knee Surg Sports Trauma Arthrosc. 2016;25(7):2151–2156. doi:10.1007/s00167-015-3953-5.
8. Ardeljan A, Palmer J, Drawbert H, Ardeljan A, Vakharia RM, Roche MW. Partial thickness rotator cuff tears: Patient demographics and surgical trends within a large insurance database. J Orthop. 2019;17:158‐161. doi:10.1016/j.jor.2019.08.027.
9. Lee CS, Davis SM, Doremus B, Kouk S, Stetson WB. Interobserver Agreement in the Classification of Partial-Thickness Rotator Cuff Tears Using the Snyder Classification System. Orthop J Sports Med. 2016;4(9):2325967116667058. doi:10.1177/2325967116667058.
10. Kanatli, U., Ayanoğlu, T., Aktaş, E., Ataoğlu, M. B., Özer, M., Çetinkaya, M. Grade of coracoacromial ligament degeneration as a predictive factor for impingement syndrome and type of partial rotator cuff tear. JSES. 2016;25(11), 1824–1828. doi:10.1016/j.jse.2016.02.026.
11. Jordan, R., W., Bentick, K., Saithna, A. Transtendinous Repair of Partial Articular Sided Supraspinatus Tears is associated with Higher Rates of Stiffness and Significantly Inferior Early Functional Scores than Tear Completion and Repair: A Systematic Review. Orthop Traumatol Surg. 2018;104(6):829-837. doi:10.1016/j.otsr.2018.06.007.
12. Liem, D., Gosheger, G., Vogler, T. PASTA-Läsionen – Debridement versus Naht. Der Orthopäde. 2016;45(2):125–129. doi:10.1007/s00132-015-3201-1.
13. Kim HJ, Kim JY, Kee YM, Rhee YG. Bursal-Sided Rotator Cuff Tears: Simple Versus Everted Type. Am J Sports Med. 2017;46(2):441–448. doi:10.1177/0363546517739577.
14. Habermeyer, P., Krieter, C., Tang, K., Lichtenberg, S., Magosch, P. A new arthroscopic classification of articular-sided supraspinatus footprint lesions: A prospective comparison with Snyder’s and Ellman’s classification. JSES. 2008;17(6):909–913. doi:10.1016/j.jse.2008.06.007.
15. Rahu, M., Kartus, J., T., Põldoja, E., Pedak, K., Kolts, I., Kask, K. Do Articular-Sided Partial-Thickness Rotator Cuff Tears After a First-Time Traumatic Anterior Shoulder Dislocation in Young Athletes Influence the Outcome of Surgical Stabilization? Orthop J Sports Med. 2018;6(6):232596711878131. doi:10.1177/2325967118781311.
16. Dow, D. F., Mehta, K., Xu, Y., England, E. The Relationship Between Body Mass Index and Fatty Infiltration in the Shoulder Musculature. J Comput Assist Tomogr. 2018;42(2):323-329. doi:10.1097/rct.0000000000000672.
17. Yamamoto, N., Mineta, M., Kawakami, J., Sano, H., Itoi, E. Risk Factors for Tear Progression in Symptomatic Rotator Cuff Tears: A Prospective Study of 174 Shoulders. Am J Sports Med. 2017;45(11):2524–2531. doi:10.1177/0363546517709780.
18. Ranebo, M., C., Björnsson Hallgren, H., C., Adolfsson, L., E. Patients with a long-standing cuff tear in one shoulder have high rates of contralateral cuff tears: a study of patients with arthroscopically verified cuff tears 22 years ago. JSES. 2018;27(3):e68–e74. doi:10.1016/j.jse.2017.10.007.
19. Camurcu, Y., Ucpunar, H., Ari, H., Duman, S., Cobden, A., Sofu, H. Predictors of allocation to surgery in patients older than 50 years with partial-thickness rotator cuff tear. JSES. 2019;28(5):828-832. doi:10.1016/j.jse.2018.12.014.
20. Gereli, A., Kocaoglu, B., Ulku, T. K., Silay, S., Kilinc, E., Uslu, S., Nalbantoglu, U. Completion repair exhibits increased healing characteristics compared with in situ repair of partial thickness bursal rotator cuff tears. Knee Surg Sports Traumatol Arthrosc. 2018;26(8):2498–2504. doi:10.1007/s00167-018-4870-1.
21. Hahn, S., Lee, Y., H., Chun, Y., M., Park, E., H., Suh, J., S. Magnetic resonance arthrography results that indicate surgical treatment for partial articular-sided supraspinatus tendon avulsion: a retrospective study in a tertiary center. Acta Radiologica. 2017;58(9), 1115–1124. doi:10.1177/0284185116684673.
22. Hohmann, E., Shea, K., Scheiderer, B., Millett, P., Imhoff, A. Indications for Arthroscopic Subacromial Decompression. A Level V Evidence Clinical Guideline. Arthroscopy. 2019;36(3):913-922. doi:10.1016/j.arthro.2019.06.012
23. Kim, Y., S., Lee, H., J., Bae, S., H., Jin, H., Song, H. S. Outcome Comparison Between in Situ Repair Versus Tear Completion Repair for Partial Thickness Rotator Cuff Tears. Arthroscopy. 2015;31(11):2191–2198. doi:10.1016/j.arthro.2015.05.016.
24. Lacheta, L., Millett, P., J. Editorial Commentary: Is Arthroscopic In Situ Repair Effective for Long-Term Functional Recovery and Pain Relief in Symptomatic Partial Rotator Cuff Tears? Arthroscopy. 2019;35(3):703–705. doi:10.1016/j.arthro.2018.12.010.
25. Ono Y, Woodmass JM, Bois AJ, Boorman RS, Thornton GM, Lo IK. Arthroscopic Repair of Articular Surface Partial-Thickness Rotator Cuff Tears: Transtendon Technique versus Repair after Completion of the Tear—A Meta-Analysis. Adv Orthop. 2016;2016: 7468054. doi:10.1155/2016/7468054.
26. Ranalletta, M., Rossi, L., A., Bertona, A., B., Atala, N., A., Tanoira, I., Maignon, G., Bongiovanni, S., L. Arthroscopic Transtendon Repair of Partial-Thickness Articular-Side Rotator Cuff Tears. Arthroscopy. 2016;32(8):1523–1528. doi:10.1016/j.arthro.2016.01.027.
27. Rossi, L., A., Atala, N., A., Bertona, A., Bongiovanni, S., Tanoira, I., Maignon, G., Ranalletta, M. Long-Term Outcomes After In Situ Arthroscopic Repair of Partial Rotator Cuff Tears. Arthroscopy. 2019; 35(3):698-702. doi:10.1016/j.arthro.2018.09.026.
28. Shin SJ, Jeong JH, Jeon YS, Kim RG. Preservation of bursal-sided tendon in partial-thickness articular-sided rotator cuff tears: a novel arthroscopic transtendon anatomic repair technique. Arch Orthop Trauma Surg. 2016;136(12):1701–1708. doi:10.1007/s00402-016-2546-1.
29. Zafra M, Uceda P, Muñoz-Luna F, Muñoz-López RC, Font P. Arthroscopic repair of partial-thickness articular surface rotator cuff tears: single-row transtendon technique versus double-row suture bridge (transosseous equivalent) fixation: results from a prospective randomized study. Arch Orthop Trauma Surg. 2020;10.1007/s00402-020-03387-6.
30. Fukuta, S., Amari, R., Tsutsui, T. Double Arthroscopic Transtendon Repair of Partial-Thickness Articular Surface Tears of the Rotator Cuff: A Surgical Technique. J Orthop Surg. 2015;23(3):395–397. doi:10.1177/230949901502300329.
31. Osti, L., Buda, M., Andreotti, M., Osti, R., Massari, L., Maffulli, N. Transtendon repair in partial articular supraspinatus tendon tear. Br Med Bull. 2017;123(1):19–34. doi:10.1093/bmb/ldx023.
32. Heuberer, P., R., Smolen, D., Pauzenberger, L., Plachel, F., Salem, S., Laky, B., et al. Longitudinal Long-term Magnetic Resonance Imaging and Clinical Follow-up After Single-Row Arthroscopic Rotator Cuff Repair: Clinical Superiority of Structural Tendon Integrity. The Am J Sports Med.2017;45(6):1283–1288. doi:10.1177/0363546517689873..


How to Cite this article: Kokkineli S, Brilakis E, Antonogiannakis E. Partial Rotator Cuff Tears: a review of the literature. Journal of Clinical Orthopaedics July-Dec 2020;5(2):30-34.

 (Abstract    Full Text HTML)   (Download PDF)


Posterior shoulder instability

Journal of Clinical Orthopaedics | Vol 5 | Issue 1 |  Jan-Jun 2020   | page: 31-35 | E. Taverna, A.Spreafico, C. Perfetti, V. Guarrella


Author: E. Taverna [1], A.Spreafico [1,2], C. Perfetti [1], V. Guarrella [1]

[1] IRCCS Istituto ortopedico Galeazzi, Milan, Italy
[2] Università degli studi di Milano, Scuola di specializzazione in Ortopedia e Traumatologia

Address of Correspondence
Dr. E. Taverna,
IRCCS Istituto ortopedico Galeazzi, Milan, Italy
E-mail: vguarrella@hotmail.com


Abstract

Normally, shoulder movements are well balanced through an interplay between static structures (bone and soft tissues as capsule, ligaments and labrum) and muscular dynamic stabilizers (muscles and tendons). Dysfunction of one or more of these components due to an injury, degeneration or congenital abnormalities may lead to shoulder instability with concomitant pain and dysfunction. This article provides an overview of the soft tissue and bony anatomy of the shoulder joint and pathopysiology of shoulder instability. It also covers the important aspects of clinical examination and special test for diagnosis of shoulder instability. A brief over view of conservative and surgical management protocols for shoulder instability are also covered in view of recent literature and authors experience.
Keywords: Posterior shoulder instability, conservative treament, Surgical management, arthroscopy.


References

1. Robinson CM, Dobson RJ. Anterior instability of the shoulder after trauma. J Bone Joint Surg [Br] 2004;86-B(4):469–479.
2. Rowe CR, Yee LB. A posterior approach to the shoulder. J Bone Joint Surg. 1944;26:580.
3. Steinmann SP. Posterior shoulder instability. Arthroscopy 2003; 19 Suppl 1: 102
4. Owens BD, Duffey ML, Nelson BJ, et al. The incidence and characteristics of shoulder instability at the United Statesmilitary academy. Am J Sports Med. 2007;35:1168–1173.
5. Robinson CM, Aderinto J. Current concepts review: recurrent posterior shoulder instability. J Bone Joint Surg Am. 2005;87: 883–892.
6. Tannenbaum EP, Sekiya JK. Posterior shoulder instability in the contact athlete. Clin Sports Med. 2013;32:781–796.
7. Brewer BJ, Wubben RC, Carrera GF. Excessive retroversion of the glenoid cavity. A cause of non- traumaticposterior instability of the shoulder. J Bone Joint Surg Am. 1986;68:724–31.
8. Dekker TJ, Peebles LA, Goldenberg BT, Millett PJ, Bradley JP, Provencher MT. Location of the Glenoid Defect in Shoulders With Recurrent Posterior Glenohumeral Instability. Am J Sports Med. 2019 Oct 16:363546519876282
9. Meyer DC, Ernstbrunner L, Boyce G, Imam MA, El Nashar R, Gerber C. Posterior Acromial Morphology Is Significantly Associated with Posterior Shoulder Instability.J Bone Joint Surg Am. 2019 Jul 17;101(14):1253-1260.
10. Blasier RB, Soslowsky LJ, Malicky DM, Palmer ML. Posterior glenohumeral subluxation: active and passive stabilization in a biomechanical model. J Bone Joint Surg Am 1997; 79: 433-440.
11. Kim S, Ha K, Park J, Kim Y, Lee Y, Lee J, Yoo J. Arthroscopic posterior labral repair and capsular shift for traumatic unidirectional recurrent posterior subluxation of the shoulder. J Bone Joint Surg Am. 2003;85:1479–87.
12. Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis. 1973;32:413–418.
13. Saliken DJ, Bornes TD, Bouliane MJ, Sheps DM, Beaupre LA. Imaging methods for quantifying glenoid and Hill-Sachs bone loss in traumatic instability of the shoulder: a scoping review. BMC Musculoskelet Disord. 2015 Jul 18;16:164.
14. Burkhead Jr WZ, Rockwood Jr CA. Treatment of instability of the shoulder with an exercise program. J Bone Joint Surg Am. 1992;74:890–6.
15. McIntyre K, Be´langer A, Dhir J, et al. Evidence-based conservative rehabilitation for posterior glenohumeral instability: a systematic review. Phys Ther Sport. 2016;22:94–100.
16. Schwartz E, Warren RF, O’Brien SJ, Fronek J. Posterior shoulder instability. Orthop Clin N Am. 1987;18:409–19.
17. Woodmass JM, Lee J, Johnson NR, Wu IT, Camp CL, Dahm DL, Krych AJ. Nonoperative Management of Posterior Shoulder Instability: An Assessment of Survival and Predictors for Conversion to Surgery at 1 to 10 Years After Diagnosis. Arthroscopy. 2019 Jul;35(7):1964-1970.
18. Saupe N, White LM, Bleakney R, Schweitzer ME, Recht MP, Jost B, Zanetti M. Acute traumatic posterior shoulder dislocation: MR findings. Radiology 2008; 248: 185-193.
19. Peat M. Functional anatomy of the shoulder complex. Phys Ther 1986; 66: 1855-1865.
20. Barbier O, Ollat D, Marchland JP, Versier G. Iliac bone-block autograft for posterior shoulder instability. Rev Chir Orthop Traumatol. 2009;95:100–7.
21. Métais P, Grimberg J, Clavert P, Kouvalchouk JF, Sirveaux F, Nourissat G, Garret J, Mansat P, Godenèche A; French Arthroscopy Society. Posterior shoulder instability managed by arthroscopic acromial pediculated bone-block. Technique. Orthop Traumatol Surg Res. 2017 Dec;103(8S):S203-S206
22. D’Ambrosi R, Perfetti C, Garavaglia G, Taverna E. One step arthroscopically assisted Latarjet and posterior bone-block, for recurrent posterior instability and anterior traumatic dislocation. Int J Shoulder Surg. 2015 Jul-Sep;9(3):94-8
23. Cerciello S, Enrico V, Morris BJ, Corona K. Bone block procedures in posterior shoulder instability. Knee Surg Sports Traumatol Arthrosc. 2016;24(2):604–11.
24. Inui H, Nobuhara K.Glenoid osteotomy for atraumatic posteroinferior shoulder instability associated with glenoid dysplasia. Bone Joint J 2018;100-B:331-7.
25. Mc LH. Posterior dislocation of the shoulder. J Bone Joint Surg Am. 1952;24 a:584–590.
26. Dueya RE, Burkhart SS. Arthroscopic treatment of a reverse Hill-Sachs lesion. Arthrosc Tech. 2013;2:e155–9.
27. Meuffels DE, Schuit H, van Biezen FC, Reijman M, Verhaar JA. The posterior bone block procedure in posterior shoulder instability: a long-term follow-up study. J Bone Joint Surg Br 2010; 92: 651-655
28. Bradley JP, McClincy MP, Arner JW, Tejwani SG. Arthroscopic capsulolabral reconstruction for posterior instability of the shoulder: a prospective study of 200 shoulders. Am J Sports Med 2013; 41: 2005-2014
29. Seppel G, Braun S, Imhoff AB. Surgical Management of Posterior Shoulder Instability. ISAKOS: Brockmeier SF, 2013.


How to Cite this article: Taverna E, Spreafico A, Perfetti C, Guarrella V. Posterior shoulder instability. Journal of Clinical Orthopaedics Jan-June 2020;5(1):31-35.

(Abstract    Full Text HTML)   (Download PDF)