Posts

Current Concepts in Prevention of Sports Injuries

Journal of Clinical Orthopaedics | Vol 8 | Issue 2 |  Jul-Dec 2023 | page: 29-34 | Clevio Joao Baptista Desouza, Nicholas Antao

DOI: https://doi.org/10.13107/jcorth.2023.v08i02.588


Author: Clevio Joao Baptista Desouza [1, 2], Nicholas Antao [2]

[1] Department of Orthopaedics, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, Maharashtra, India

[2] Department of Orthopaedics, Holy Spirit Hospital, Andheri, Mumbai, Maharashtra, India.

Address of Correspondence

Dr. Clevio Joao Baptista Desouza, Department of Orthopaedics, Holy Spirit Hospital, Andheri, Mumbai, Maharashtra, India.

E-mail: ceviod@gmail.com


Abstract

Introduction: The contemporary surge in sports participation, from recreational to professional levels, has brought forth an undeniable enthusiasm for physical activity. However, this heightened engagement comes with an inherent risk of sports-related injuries, spanning various nature and severity. This article introduces the imperative need for a systematic and practical approach to prevent sports injuries, emphasizing the age-diverse demographic involved and the multifaceted motivations driving sports participation.

Materials and Methods: The “Rule of 10,” presented in this paper, serves as a comprehensive guideline for sports injury prevention. The methodology encompasses a range of proactive measures addressing pre-season preparation, athlete education, and holistic strategies to mitigate injury risks. Each facet of the rule, from pre-season physical check-ups to emphasizing psychological preparedness, contributes to a cohesive and multifaceted injury prevention framework.

Conclusion: We through our review article have focused on the “Rule of 10” which advocates a holistic approach to sports injury prevention, integrating pre-season assessments, diverse training, and technology. It emphasizes resilience, education, and collective responsibility for athlete well-being.

Keywords: Agility, Endurance, Prevention, Sports, Strength.


References

1. Bahr R, van Mechelen W, Kannus P. Prevention of sports injuries. In: Kjær M, Krogsgaard M, Magnusson P, Engebretsen L, Roos H, Takala T, et al., editors. Textbook of Sports Medicine. Basic Science and Clinical Aspects of Sports Injury and Physical Activity. Oxford: Blackwell Science; 2002. p. 299-314.

2. Patel DR, Yamasaki A, Brown K. Epidemiology of sports-related musculoskeletal injuries in young athletes in United States. Transl Pediatr 2017;6:160-6.

3. Drawer S, Fuller CW. Evaluating the level of injury in English professional football using a risk based assessment process. Br J Sports Med 2002;36:446-51.

4. Engebretsen L, Bahr R. Why is injury prevention in sports important? In: Sports Injury Prevention. Hoboken, NJ: Wiley-Blackwell; 2009. p. 1-6.

5. Andersen TE, Árnason A, Engebretsen L, Bahr R. Mechanisms of head injuries in elite football. Br Journal Sports Med 2004;38:690-6.

6. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: A review of the Hunt Valley II meeting, January 2005. Am J Sports Med 2006;34:1512-32.

7. Nakase K, Shitara H, Tajika T. An analysis of pre-season risk factors for low back injury in high-school baseball pitchers: a prospective study. Sci Rep. 2021 Jun 1;11(1):11415.

8. Lauersen J.B., Bertelsen D.M., Andersen L.B. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2014;48:871–877.

9. Barengo NC, Meneses-Echávez JF, Ramírez-Vélez R, Cohen DD, Tovar G, Bautista JE. The impact of the FIFA 11+ training program on injury prevention in football players: A systematic review. Int J Environ Res Public Health 2014;11:11986-2000.

10. Árnason A, Andersen TE, Holme I, Engebretsen L, Bahr R. Prevention of hamstring strains in elite soccer: An intervention study. Scand J Med Sci Sports 2008;18:40-8.

11. Hagel BE, Pless IB, Goulet C, Platt RW, Robitaille Y. Effectiveness of helmets in skiers and snowboarders: Case-control and case crossover study. BMJ 2005;330:281.

12. Sulheim S, Holme I, Ekeland A, Bahr R. Helmet use and risk of head injuries in alpine skiers and snowboarders. JAMA 2006;295:919-24.

13. Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R. Exercises to prevent lower limb injuries in youth sports: Cluster randomised controlled trial. BMJ 2005;330:449.

14. Quarrie KL, Gianotti SM, Hopkins WG, Hume PA. Effect of nationwide injury prevention programme on serious spinal injuries in New Zealand rugby union: Ecological study. BMJ 2007;334:1150.

15. Sadigursky, D., Braid, J.A., De Lira, D.N.L. et al. The FIFA 11+ injury prevention program for soccer players: a systematic review. BMC Sports Sci Med Rehabil 9, 18 (2017).

16. Kujala UM, Sarna S, Kaprio J, Koskenvuo M. Hospital care in later life among former world-class Finnish athletes. JAMA 1996;276:216-20.

17. Belval LN, Hosokawa Y, Casa DJ. Practical Hydration Solutions for Sports. Nutrients. 2019 Jul 9;11(7):1550.

18. Irrgang JJ, Whitney S, Cox E. Balance and proprioceptive training for rehabilitation of the lower extremity. J Sport Rehabil 1994;3:68-93.

19. Dhillon H, Dhillon S, Dhillon MS. Current concepts in sports injury rehabilitation. Indian J Orthop 2017;51:529-36.

20. Pease DG. Psychologic factors of rehabilitation. In: Andrews JR, Harrelson GL, editors. Physical Rehabilitation of the Injured Athlete. 2nd ed. Philadelphia: W. B. Saunders Co; 1996. p. 1-12.

21. Prentice W. Arnheim’s Principles of Athletic Training. 12th ed. Boston: McGraw Hill; 2005.

22. Engebretsen L, Bahr R, Cook JL, Derman W, Emery CA, Finch CF, et al. The IOC centres of excellence bring prevention to sports medicine. Br J Sports Med 2014;48:1270-5.

23. Verhagen E, Bolling C. Protecting the health of the @hlete: How online technology may aid our common goal to prevent injury and illness in sport. Br J Sports Med 2015;49:1174-8.  

How to Cite this article: Desouza C, Antao N. Current Concepts in Prevention of Sports Injuries. Journal of Clinical Orthopaedics 2023:8(2);29-34.

 (Abstract Text HTML)   (Download PDF)


Guidelines on Infection after ACL Reconstruction

Journal of Clinical Orthopaedics | Vol 6 | Issue 1 |  Jan-Jun 2021 | page: 53-59 | I. Geethan, Raju Easwaran


Author: I. Geethan [1], Raju Easwaran [2]

[1] Department of Orthopaedics, Dhanalakshmi Srinivasan Medical College, Siruvachur, Perambalur

[2] Director, Shree Meenakshi Orthopaedics & Sports Medicine Clinic

 

Address of Correspondence
Dr. I. Geethan,
Department of Orthopaedics, Dhanalakshmi Srinivasan Medical College, Siruvachur, Perambalur
E-mail: igeethan@gmail.com


Abstract

Infection after ACL reconstruction (ACLR) is a rare but disastrous event that increases the cost of treatment and affects the short and long term outcome. Clinicians must be aware of the best preventive practices and be knowledgeable regarding the early diagnosis and prompt management to minimise the complications following ACLR. Recent literature has identified the risk factors for infection after ACLR and has proposed recommendations for its management. This article reviews the recent literature and proposes a plan for prevention of infection and its treatment. Specifically, the use of Bone Patellar Tendon Bone graft in patients at a higher risk of infection and Vancomycin wrapping of graft are the two interventions that can reduce the risk of infection. A surgeon must have a low threshold for suspecting infection and early graft preserving arthroscopic lavage must be performed on suspicion of infection. Culture directed antibiotics must be given for 6 weeks following infection. Graft and hardware must be removed in patients requiring repeat debridement. Revision ACLR is offered only for those patients who report instability.
Keywords: Infection, ACL reconstruction, Prevention, Management


References

  1. Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, et al. Anew 2D and 3D imaging approach to musculo-skeletal
    physiology and pathology with low-dose radiation and the standing position: The EOS system. Bull Acad Natl Med 2005;189:287-300.
  2. Wybier M, Bossard P. Musculoskeletal imaging in progress: The EOS imaging system. J Bone Spine 2013;80:238-43.
  3. Melhem E, Assi A, El Rachkidi R, Ghanem I. EOS (®) biplanar X-ray imaging: Concept, developments, benefits, and limitations.
    J Child Orthop 2016;10:1-14.
  4. Garg B, Mehta N, Bansal T, Malhotra R. EOS® imaging: Concept and current applications in spinal disorders. J Clin Orthop Trauma 2020;11:786-93.
  5. Mishra P, Lal A, Mohindra M, Mehta N, Joshi D, Chaudhary D. Incidence, management and outcome assessment of post operative infection following single bundle and double bundle acl reconstruction. J Clin Orthop Trauma [Internet]. 2018 Apr 1 [cited 2021 Jan 17];9(2):167–71. Available from: https://pubmed.ncbi.nlm.nih.gov/29896022/.
  6. Brophy RH, Wright RW, Huston LJ, Nwosu SK, Spindler KP, Kaeding CC, et al. Factors associated with infection following anterior cruciate ligament reconstruction. J Bone Jt Surg – Am Vol. 2015 Mar 18;97(6):450–4.
  7. Barbara K, Alan I, Goran V, Saša J. Knee infection following anterior cruciate ligament reconstruction: a cohort study of one thousand, eight hundred and ninety one patients from the single-centre database. Int Orthop [Internet]. 2020 May 1 [cited 2 0 2 1 J a n 1 7 ] ; 4 4 ( 5 ) : 8 6 9 – 7 5 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/32114657/
  8. Wang C, Lee YH a. D, Siebold R. Recommendations for the management of septic arthritis after ACL reconstruction. Vol. 22, Knee surgery, sports traumatology, arthroscopy  : official journal of the ESSKA. 2014. p. 2136–44.
  9. Otchwemah R, Naendrup JH, Mattner F, Tjardes T, Bäthis H, Shafizadeh S. Effective graft preservation by following a standard protocol for the treatment of knee joint infection after anterior cruciate ligament reconstruction. J Knee Surg. 2019;32(11):1111–20.
  10. Torres-Claramunt R, Gelber P, Pelfort X, Hinarejos P, Leal[1]Blanquet J, Pérez-Prieto D, et al. Managing septic arthritis after knee ligament reconstruction. Vol. 40, International Orthopaedics. Springer Verlag; 2016. p. 607–14.
  11. Nag HL, Neogi DS, A.R. N, V. AK, Yadav CS, Singh U. Tubercular Infection After Arthroscopic Anterior Cruciate Ligament Reconstruction. Arthrosc – J Arthrosc Relat Surg. 2009 Feb;25(2):131–6.
  12. Muscolo DL, Carbo L, Aponte-Tinao LA, Ayerza MA, Makino A. Massive bone loss from fungal infection after anterior cruciate ligament arthroscopic reconstruction. Clin Orthop Relat Res. 2009;467(9):2420–5.
  13. Sun L, Zhang L, Wang K, Wang W, Tian M. Fungal osteomyelitis after arthroscopic anterior cruciate ligament reconstruction: Acase report with review of the literature. Knee [Internet]. 2012 Oct [cited 2021 Jan 17];19(5):728–31. Available from: https://pubmed.ncbi.nlm.nih.gov/22209694/.
  14. Vallianatos PG, Tilentzoglou AC, Koutsoukou AD. Septic Arthritis Caused by Erysipelothrix rhusiopathiae Infection after Arthroscopically Assisted Anterior Cruciate Ligament Reconstruction. Arthroscopy [Internet]. 2003 [cited 2021 Jan 1 7 ] ; 1 9 ( 3 ) . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/12627143/.
  15. Schollin-Borg M, Michaëlsson K, Rahme H. Presentation, Outcome, and Cause of Septic Arthritis after Anterior Cruciate Ligament Reconstruction: A Case Control Study. Arthrosc – J Arthrosc Relat Surg [Internet]. 2003 [cited 2020 Oct 2 9 ] ; 1 9 ( 9 ) : 9 4 1 – 7 . A v a i l a b l e f r o m: Presentation, outcome, and cause of septic arthritis after anterior cruciate ligament reconstruction: a case control study – PubMed (nih.gov)
  16. Cancienne JM, Gwathmey FW, Miller MD, Werner BC. Tobacco Use Is Associated with Increased Complications after Anterior Cruciate Ligament Reconstruction. Am J Sports Med [Internet]. 2016 Jan 1 [cited 2021 Feb 5];44(1):99–104. Available from: http://journals.sagepub.com/doi/10.1177/0363546515610505
  17. Geethan I, Easwaran R, Sahanand S, Sivaraman A, Gupta A, Devgan A, et al. Management Guidelines for Infection After ACL Reconstruction: Expert Opinion Statement Based on the Modified Delphi Survey of Indian Arthroscopy Surgeons. Indian J Orthop [Internet]. 2021 Feb 1 [cited 2021 Feb 3];1–10. Available from: http://link.springer.com/10.1007/s43465-021- 00363-z
  18. Bibbo C, Patel D V., Gehrmann RM, Lin SS. Chlorhexidine provides superior skin decontamination in foot and ankle surgery: A prospective randomized study. Clin Orthop Relat Res [Internet]. 2005 [cited 2021 Feb 3];438(438):204–8. Available from: https://pubmed.ncbi.nlm.nih.gov/16131892/
  19. Lee I, Agarwal RK, Lee BY, Fishman NO, Umscheid CA. Systematic Review and Cost Analysis Comparing Use of chlorhexidine with Use of Iodine for Preoperative Skin Antisepsis to Prevent Surgical Site Infection. Infect Control Hosp Epidemiol [Internet]. 2010 Dec [cited 2021 Feb 3 ] ; 3 1 ( 1 2 ) : 1 2 1 9 – 2 9 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/20969449/
  20. WHO Surgical Site infection Prevention Guidelines Web Appendix 7 Summary of a systematic review on the effectiveness and optimal method of hair removal [Internet]. [cited 2020 Oct 27]. Available from: http://gradepro.org/
  21. Pérez-Prieto D, Portillo ME, Torres-Claramunt R, Pelfort X, Hinarejos P, Monllau JC. Contamination occurs during ACL graft harvesting and manipulation, but it can be easily eradicated. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2018 Feb 1 [cited 2021 Jan 17];26(2):558–62. Available from: https://pubmed.ncbi.nlm.nih.gov/28988312/
  22. Parada SA, Grassbaugh JA, DeVine JG, Arrington ED. Instrumentation-specific infection after anterior cruciate ligament reconstruction. Vol. 1, Sports Health. 2009. p. 481–5.
  23. Tuman J, Diduch DR, Baumfeld JA, Rubino LJ, Hart JM. Joint Infection Unique to Hamstring Tendon Harvester Used During Anterior Cruciate Ligament Reconstruction Surgery. Arthrosc – J Arthrosc Relat Surg. 2008 May;24(5):618–20.
  24. Werner CML, Necas T, Schneeberger AG. Defects of camera covers after arthroscopic surgery. J Shoulder Elb Surg [Internet]. 2006 Mar [cited 2021 Feb 4];15(2):199–202. Available from: https://pubmed.ncbi.nlm.nih.gov/16517365/
  25. Bansal A, Lamplot JD, VandenBerg J, Brophy RH. Meta[1]analysis of the Risk of Infections After Anterior Cruciate Ligament Reconstruction by Graft Type. Am J Sports Med [Internet]. 2018 May 1 [cited 2021 Feb 5];46(6):1500–8. A v a i l a b l e f r o m : http://journals.sagepub.com/doi/10.1177/0363546517714450
  26. Hurvitz AP, Prentice HA, Funahashi TT, Maletis GB. Screw and Sheath Tibial Fixation Associated With a Higher Likelihood of Deep Infection After Hamstring Graft Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2020 Mar 1;48(4):806–11.
  27. Pérez-Prieto D, Portillo ME, Torres-Claramunt R, Pelfort X, Hinarejos P, Monllau JC. Contamination occurs during ACL graft harvesting and manipulation, but it can be easily eradicated. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2018 Feb 1 [cited 2020 Nov 17];26(2):558–62. Available from: https://pubmed.ncbi.nlm.nih.gov/28988312/
  28. Badran MA, Moemen DM. Hamstring graft bacterial contamination during anterior cruciate ligament reconstruction: clinical and microbiological study. Int Orthop [Internet]. 2016 Sep 1 [cited 2021 Jan 17];40(9):1899–903. Available from: https://link.springer.com/article/10.1007/s00264-016-3168-5.
  29. Grayson JE, Grant GD, Dukie S, Vertullo CJ. The in vitro elution characteristics of vancomycin from tendons. Clin Orthop Relat Res [Internet]. 2011 [cited 2020 Nov 17];469(10):2948–52. Available from: https://pubmed.ncbi.nlm.nih.gov/21246314/
  30. Vertullo CJ, Quick M, Jones A, Grayson JE. A surgical technique using presoaked vancomycin hamstring grafts to decrease the risk of infection after anterior cruciate ligament reconstruction. Arthrosc – J Arthrosc Relat Surg. 2012 Mar;28(3):337–42.
  31. Schuster P, Schlumberger M, Mayer P, Raoulis VA, Oremek D, Eichinger M, et al. Lower incidence of post-operative septic arthritis following revision anterior cruciate ligament reconstruction with quadriceps tendon compared to hamstring tendons. Knee Surgery, Sport Traumatol Arthrosc. 2020.
  32. Pérez-Prieto D, Torres-Claramunt R, Gelber PE, Shehata TMA, Pelfort X, Monllau JC. Autograft soaking in vancomycin reduces the risk of infection after anterior cruciate ligament reconstruction. Knee Surgery, Sport Traumatol Arthrosc. 2016 Sep 1;24(9):2724–8.
  33. Offerhaus C, Balke M, Hente J, Gehling M, Blendl S, Höher J. Vancomycin pre-soaking of the graft reduces postoperative infection rate without increasing risk of graft failure and arthrofibrosis in ACL reconstruction. Knee Surgery, Sport Traumatol Arthrosc. 2019 Sep 1;27(9):3014–21
  34. Wan KH-M, Tang SP-K, Lee RH-L, Wong KK, Wong K-K. The use of vancomycin-soaked wrapping of hamstring grafts to reduce the risk of infection after anterior cruciate ligament reconstruction: An early experience in a district general hospital. Asia-Pacific J Sport Med Arthrosc Rehabil Technol [Internet]. 2020 Oct 1 [cited 2020 Oct 25];22:10–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32642443
  35. Figueroa D, Figueroa F, Calvo R, Lopez M, Goñi I. Presoaking of Hamstring Autografts in Vancomycin Decreases the Occurrence of Infection Following Primary Anterior Cruciate Ligament Reconstruction. Orthop J Sport Med. 2019;7(9).
  36. Xiao M, Sherman SL, Safran MR, Abrams GD. Surgeon practice patterns for pre-soaking ACL tendon grafts in vancomycin: a survey of the ACL study group. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 [cited 2021 Jan 17]; Available from: https://pubmed.ncbi.nlm.nih.gov/32902684/
  37. Phegan M, Grayson JE, Vertullo CJ. No infections in 1300 anterior cruciate ligament reconstructions with vancomycin pre-soaking of hamstring grafts. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2016 Sep 1 [cited 2021 Jan 1 7 ] ; 2 4 ( 9 ) : 2 7 2 9 – 3 5 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/25771788/
  38. Naendrup JH, Marche B, de Sa D, Koenen P, Otchwemah R, Wafaisade A, et al. Vancomycin-soaking of the graft reduces the incidence of septic arthritis following ACL reconstruction: results of a systematic review and meta-analysis. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 Apr 1 [cited 2 0 2 1 J a n 1 7 ] ; 2 8 ( 4 ) : 1 0 0 5 – 1 3 . Av a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/30656372/
  39. Jacquet C, Jaubert M, Pioger C, Sbihi A, Pithioux M, Le Baron M, et al. Presoaking of Semitendinosus Graft With Vancomycin Does Not Alter Its Biomechanical Properties: A Biomechanical In Vitro–Controlled Study Using Graft From Living Donors. Arthrosc – J Arthrosc Relat Surg [Internet]. 2020 Aug 1 [cited 2 0 2 1 J a n 1 7 ] ; 3 6 ( 8 ) : 2 2 3 1 – 6 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/32304710/
  40. Lamplot JD, Liu JN, Hutchinson ID, Chen T, Wang H, Wach A, et al. Effect of Vancomycin Soaking on Anterior Cruciate Ligament Graft Biomechanics. Arthrosc – J Arthrosc Relat Surg [Internet]. 2 0 2 0 [ c i t e d 2 0 2 1 J a n 1 7 ] ; A v a i l a b l e f r o m : Effect of Vancomycin Soaking on Anterior Cruciate Ligament Graft Biomechanics – PubMed (nih.gov)
  41. Pérez-Prieto D, Perelli S, Corcoll F, Rojas G, Montiel V, Monllau JC. The vancomycin soaking technique: no differences in autograft re-rupture rate. A comparative study. Int Orthop [Internet]. 2020 [cited 2021 Jan 17]; Available from: https://pubmed.ncbi.nlm.nih.gov/32944802/
  42. Bohu Y, Klouche S, Sezer HB, Herman S, Grimaud O, Gerometta A, et al. Vancomycin-soaked autografts during ACL reconstruction reduce the risk of post-operative infection without affecting return to sport or knee function. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 Aug 1 [cited 2021 Jan 1 7 ] ; 2 8 ( 8 ) : 2 5 7 8 – 8 5 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/32025764/
  43. Carney J, Heckmann N, Mayer EN, Alluri RK, Vangsness CT, Hatch GF, et al. Should antibiotics be administered before arthroscopic knee surgery? Asystematic review of the literature [Internet]. Vol. 9, World Journal of Orthopaedics. Baishideng Publishing Group Co; 2018 [cited 2021 Jan 15]. p. 262–70. Available from: https://pubmed.ncbi.nlm.nih.gov/30479973/
  44. Jefferies JG, Aithie JMS, Spencer SJ. Vancomycin-soaked wrapping of harvested hamstring tendons during anterior cruciate ligament reconstruction. A review of the ‘vancomycin wrap.’Vol. 26, Knee. Elsevier B.V.; 2019. p. 524–9.
  45. Yazdi H, Gomrokchi AY, Nazarian A, Lechtig A, Hanna P, Ghorbanhoseini M. The effect of gentamycin in the irrigating solution to prevent joint infection after anterior cruciate ligament (ACL) reconstruction. Arch Bone Jt Surg. 2019 Jan 1;7(1):67–74.
  46. Barbier O, Danis J, Versier G, Ollat D. When the tendon autograft is dropped accidently on the floor: A study about bacterial contamination and antiseptic efficacy. Knee. 2015 Oct 1;22(5):380–3.
  47. Plante MJ, Li X, Scully G, Brown MA, Busconi BD, DeAngelis NA. Evaluation of sterilization methods following contamination of hamstring autograft during anterior cruciate ligament reconstruction. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2013 May 15 [cited 2021 Jan 17];21(3):696–701. A v a i l a b l e f r o m : https://link.springer.com/article/10.1007/s00167-012-2049-8.
  48. Oh HL, Chen DB, Seeto BG, MacDessi SJ. Mycobacterium fortuitum infection after anterior cruciate ligament reconstruction using a polylactic acid bioabsorbable screw: Case report. Knee. 2010 Mar;17(2):176–8.
  49. Vallianatos PG, Tilentzoglou AC, Koutsoukou AD. Septic Arthritis Caused by Erysipelothrix rhusiopathiae Infection after Arthroscopically Assisted Anterior Cruciate Ligament Reconstruction. Arthroscopy. 2003;19(3).
  50. Metcalf K, Ko JWK, Quilici S, Barnes P, Crawford DC. Differentiating Occult Propionibacterium acnes Infection From Aseptic “Biologic” Interference Screw Hydrolysis After Anterior Cruciate Ligament Reconstruction: Introducing a Novel Culture Protocol for Detecting Low-Virulence Organisms. Orthop J Sport Med. 2015 Oct 23;3(10).
  51. Rhee SM, Kim MS, Kim JD, Ro K, Ko YW, Rhee YG. Hematologic Expression After Shoulder Surgery: Normalization Curve of Serum Inflammatory Markers. Arthrosc – J Arthrosc Relat Surg. 2021 Jan 1;37(1):71–82.
  52. Nam JH, Cho MR, Lee SH, Song SK, Choi WK. C-reactive protein course after classical complication free total knee arthroplasty using navigation. Knee Surg Relat Res [Internet]. 2020 Dec 1 [cited 2021 Feb 6];32(1):56. Available from: https://kneesurgrelatres.biomedcentral.com/articles/10.1186/ s43019-020-00074-z
  53. Costa GG, Grassi A, Lo Presti M, Cialdella S, Zamparini E, Viale P, et al. White Blood Cell Count is the most Reliable Test for the Diagnosis of Septic Arthritis after Anterior Cruciate Ligament Reconstruction. An observational study on 38 patients. Arthrosc J Arthrosc Relat Surg [Internet]. 2020 Dec [ c i t e d 2 0 2 1 J a n 1 7 ] ; A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/33278527/
  54. Ligament Reconstruction. An observational study on 38 patients. Arthrosc J Arthrosc Relat Surg [Internet]. 2020 Dec [ c i t e d 2 0 2 1 J a n 1 7 ] ; A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/33278527/
  55. Pérez-Prieto D, Trampuz A, Torres-Claramunt R, Eugenia Portillo M, Puig-Verdié L, Monllau JC. Infections after Anterior Cruciate Ligament Reconstruction: Which Antibiotic after Arthroscopic Debridement? J Knee Surg [Internet]. 2017 May 1 [cited 2021 Jan 17];30(4):309–13. Available from: https://pubmed.ncbi.nlm.nih.gov/27367205/
  56. Pogorzelski J, Themessl A, Achtnich A, Fritz EM, Wörtler K, Imhoff AB, et al. Septic Arthritis After Anterior Cruciate Ligament Reconstruction: How Important Is Graft Salvage? Am J Sports Med. 2018 Aug 1;46(10):2376–83.
  57. Waterman BR, Arroyo W, Cotter EJ, Zacchilli MA, Garcia ESJ, Owens BD. Septic Arthritis After Anterior Cruciate Ligament Reconstruction: Clinical and Functional Outcomes Based on Graft Retention or Removal. Orthop J Sport Med. 2018 Feb26;6(3).
  58. Kusnezov N, Eisenstein ED, Dunn JC, Wey AJ, Peterson DR, Waterman BR. Anterior Cruciate Ligament Graft Removal Versus Retention in the Setting of Septic Arthritis After Reconstruction: A Systematic Review and Expected Value Decision Analysis. Vol. 34, Arthroscopy – Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2018. p. 967–75.
  59. Cote MP. Editorial Commentary: Graft Removal Versus Retention for Septic Arthritis After Anterior Cruciate Ligament Reconstruction: Accounting for Patient Preference Flips the Script on Current Practice [Internet]. Vol. 34, Arthroscopy – Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2018 [cited 2021 Jan 15]. p. 976–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29502709/
  60. Makhni EC, Steinhaus ME, Mehran N, Schulz BS, Ahmad CS. Functional Outcome and Graft Retention in Patients with Septic Arthritis after Anterior Cruciate Ligament Reconstruction: A Systematic Review. Vol. 31, Arthroscopy – Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2015. p. 1392–401.

How to Cite this article: Geethan I, Easwaran R. Guidelines on Infection after ACL Reconstruction. Journal of Clinical Orthopaedics Jan-Jun 2021;6(1): 53-59.

 (Abstract    Full Text HTML)   (Download PDF)


Preventive Strategy for Surgical Site Infections in Orthopaedics

Journal of Clinical Orthopaedics | Vol 4 | Issue 2 |  July-Dec 2019 | page:51-56 | Dr. Anoop C. Dhamangaonkar


Author: Dr. Anoop C. Dhamangaonkar [1]

[1] Department of Orthopaedics, LTMGH, Mumbai

Address of Correspondence
Dr. Anoop C. Dhamangaonkar,
Department of Orthopaedics, LTMGH, Mumbai


Abstract

Surgical site infections are serious complication of any surgery. There are many factors that affect the incidence of surgical site infections and if these factors are understood and controlled to a certain extent, it will help in reducing the incidence of SSIs. In current review, an overview of patient factors, Operative set up and intraoperative precautions are presented which will help in understanding and preventing SSIs.
Keywords: Surgical site infection, Orthoapedics, Prevention.


References

1. Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J, Fraser VJ: Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am. 2008;90(1):62-9.
2. Hikata T, Iwanami A, Hosogane N, Watanabe K, Ishii K, Nakamura M, Kamata M, Toyama Y, Matsumoto M.: High preoperative hemoglobin A1c is a risk factor for surgical site infection after posterior thoracic and lumbar spinal instrumentation surgery. J Orthop Sci. 2014;19(2):223-8.
3. Abdallah DY, Jadaan MM, McCabe JP: Body mass index and risk of surgical site infection following spine surgery: a meta-analysis.Eur Spine J. 2013;22(12):2800-9.
4. Pahys JM, Pahys JR, Cho SK, Kang MM, Zebala LP, Hawasli AH, Sweet FA, Lee DH, RiewKD.Methods to decrease postoperative infections following posterior cervical spine surgery.J Bone Joint Surg Am. 2013 ;95(6):549-54.
5. Thomsen T, Tønnesen H, MøllerAM:Effect of preoperative smoking cessation interventions on postoperative complications and smoking cessation.Br J Surg. 2009;96(5):451-61.
6. Klein JD, Hey LA, Yu CS, Klein BB, Coufal FJ, Young EP, Marshall LF, Garfin SR. Perioperative nutrition and postoperative complications in patients undergoing spinal surgery. Spine 1996 ;21(22):2676-82.
7. Hawkins G, Stewart S, Blatchford O, Reilly J. Should healthcare workers be screened routinely for meticillin–resistant staphylococcus aureus? A review of the evidence. J Hosp Infect. 2011;77:285–289.
8. Albrich WC, Harbarth S. Health–care workers: source, vector, or victim of MRSA? Lancet Infect Dis. 2008;8:289–301.
9. Cimolai N. The role of healthcare personnel in the maintenance and spread of methicillin–resistant Staphylococcus aureus. J Infect Public Health. 2008;1:78–100.
10. Danzmann L, Gastmeier P, Schwab F, Vonberg RP. Health care workers causing large nosocomial outbreaks: a systematic review. BMC Infect Dis. 2013;13:98.
11. Mullen A, Wieland HJ, Wieser ES, Spannhake EW, Marinos RS. Perioperative participation of orthopedic patients and surgical staff in a nasal decoloni- zation intervention to reduce staphylococcus spp surgical site infections. Am J Infect Control. 2017;45:554–556.
12. De Lucas–Villarrubia JC, Lopez–Franco M, Granizo JJ, De Lucas–Garcia JC, Gomez–Barrena E. Strategy to control methicillin–resistant taphylococcus aureus post–operative infection in orthopaedic surgery. Int Orthop. 2004;28:16–20.
13. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 1999;27:97–132; quiz 133–4; discussion 96.
14. Parvizi J, Cavanaugh PK, Diaz–Ledezma C. Periprosthetic knee infection: ten strategies that work. Knee Surg Relat Res. 2013; 25: 155–64.
15. Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2011:CD004122.
16. Rezapoor M, Parvizi J. Prevention of periprosthetic joint infection. J Arthroplasty. 2015;30:902–7.
17. Lefebvre A, Saliou P, Lucet JC, Mimoz O, Keita–Perse O, Grandbastien B, et al. Preoperative hair removal and surgical site infections: network meta– analysis of randomized controlled trials. J Hosp Infect. 2015;91:100–8.
18. Phillips, Nancymarie. Berry & Kohn’s operating room technique. Saint Louis: Elsevier, 2017.
19. Hemani ML, Lepor H. Skin preparation for the prevention of surgical site infection: which agent is best? Rev Urol. 2009;11: 190–5.
20. Markatos K, Kaseta M, Nikolaou VS. Perioperative skin preparation and draping in modern total joint arthroplasty: current evidence. Surg Infect (Larchmt). 2015;16:221–225.
21. Matar WY, Jafari SM, Restrepo C, Austin M, Purtill JJ, Parvizi J. Preventing infection in total joint arthroplasty. J Bone Joint Surg Am. 2010;92 Suppl 2:36–46.
22. Bellchambers J, Harris JM, Cullinan P, Gaya H, Pepper JR. A prospective study of wound infection in coronary artery surgery. Eur J Cardiothoracic Surg. 1999;15:45–50.
23. Garibaldi RA, Maglio S, Lerer T, Becker D, Lyons R. Comparison of nonwoven and woven gown and drape fabric to prevent intraoperative wound contamination and postoperative infection. Am J Surg. 1986;152: 505–9.
24. Webster J, Alghamdi A. Use of plastic adhesive drapes during surgery for preventing surgical site infection. Cochrane Database of Syst Rev. 2015:CD006353.
25. Blom A, Estela C, Bowker K, MacGowan A, Hardy JR. The passage of bacteria through surgical drapes. Ann R Coll Surg Engl. 2000; 82(6): 405–7.
26. Marvil SC, Tiedeken NC, Hampton DM, Kwok SC, Samuel SP, Sweitzer BA. Stockinette application over a non–prepped foot risks proximal contamina- tion. J Arthroplasty. 2014; 29(9):1819–22.
27. Ritter M a, Eitzen H, French ML, Hart JB. The operating room environment as affected by people and the surgical face mask. Clin OrthopRelat Res.1975:147–50.
28. Weiser M, Shemesh S, Chen D, Bronson M, Moucha C. The effect of door opening on positive pressure and airflow in operating rooms. J Am AcadOrthop Surg. 2018;26:e105–e113.
29. Tanner J, Dumville JC, Norman G, Fortnam M. Surgical hand antisepsis to reduce surgical site infection. Cochrane Database Syst Rev. 2016 Jan 22;(1):CD004288.
30. Markel TA, Gormley T, Greeley D, Ostojic J, Wise A, Rajala J, et al. Hats off: a study of different operating room headgear assessed by environmental quality indicators. J Am Coll Surg. 2017; 225: 573–81.
31. McLure HA, Mannam M, Talboys CA, Azadian BS, Yentis SM. The effect of facial hair and sex on the dispersal of bacteria below a masked subject. Anaesthesia. 2000;55: 173–6.
32. Roxburgh M, Gall P, Lee K. A cover up? Potential risk of wearing theatre clothing outside theatre. J PerioperPract. 2006 Jan;16(1):30-3, 35-41.
33. Breier A–C, Brandt C, Sohr D, Geffers C, Gastmeier P. Laminar airflow ceiling size: no impact on infection rates following hip and knee prosthesis. Infect Control Hosp Epidemiol. 2011;32:1097–1102.
34. Singh S, Reddy S, Shrivastava R. Does laminar airflow make a difference to the infection rates for lower limb arthroplasty: a study using the National Joint Registry and local surgical site infection data for two hospitals with and without laminar airflow. Eur J Orthop Surg Traumatol. 2017;27:261-5.
35. Brandt C, Hott U, Sohr D, Daschner F, Gastmeier P, Rüden H. Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery. Ann Surg. 2008;248:695–700.
36. Hooper GJ, Rothwell AG, Frampton C, Wyatt MC. Does the use of laminar flow and space suits reduce early deep infection after total hip and knee replacement?: the ten–year results of the New Zealand Joint Registry. J Bone Joint Surg Br. 2011;93:85–90.
37. Tayton ER, Frampton C, Hooper GJ, Young SW. The impact of patient and surgical factors on the rate of infection after primary total knee arthro- plasty: an analysis of 64,566 joints from the New Zealand Joint Registry. Bone Joint J. 2016;98–B:334–40.
38. Whyte W, Hodgson R, Tinkler J. The importance of airborne bacterial contamination of wounds. J Hosp Infect. 1982;3:123–35.
39. Sharp RJ, Chesworth T, Fern ED. Do warming blankets increase bacterial counts in the operating field in a laminar–flow theatre? J Bone Joint Surg Br. 2002;84:486–8.
40. Sessler DI, Olmsted RN, Kuelpmann R. Forced–air warming does not worsen air quality in laminar flow operating rooms. AnesthAnalg. 2011;113:1416–21.
41. Oguz R, Diab–Elschahawi M, Berger J, et al. Airborne bacterial contamination during orthopedic surgery: A randomized controlled pilot trial. J Clin Anesth. 2017;38:160–4.
42. Haeberle HS, Navarro SM, Samuel LT, et al. No evidence of increased infec- tion risk with forced–air warming devices: a systematic review. Surg Technol Int. 2017;31:295–301.
43. Hussein JR, Villar RN, Gray AJ, Farrington M. Use of light handles in the laminar flow operating theatre––is it a cause of bacterial concern? Ann R Coll Surg Engl. 2001;83:353–4.
44. Dalstrom DJ, Venkatarayappa I, Manternach AL, Palcic MS, Heyse BA, Prayson MJ. Time–dependent contamination of opened sterile operating– room trays. J Bone Joint Surg Am. 2008;90:1022–1025.
45. Kaya I, Ugras A, Sungur I, Yilmaz M, Korkmaz M, Cetinus E. Glove perfora- tion time and frequency in total hip arthroplasty procedures. Acta Orthop TraumatolTurc. 2012;46:57–60.
46. Bible JE, Biswas D, Whang PG, Simpson AK, Grauer JN. Which regions of the operating gown should be considered most sterile? Clin OrthopRelat Res. 2009;467:825–830.
47. Abdelaziz H, Zahar A, Lausmann C, Gehrke T, Fickenscher H, Suero EM, et al. High bacterial contamination rate of electrocautery tips during total hip and knee arthroplasty. Int Orthop. 2018. doi:10.1007/s00264–018–3822–1.
48. Givissis P, Karataglis D, Antonarakos P, Symeonidis PD, Christodoulou A. Suction during orthopaedic surgery. How safe is the suction tip? Acta OrthopBelg 2008;74:531–533.
49. Greenough CG. An investigation into contamination of operative suction. J Bone Joint Surg Br. 1986;68:151–153.
50. Davis N, Curry A, Gambhir AK, Panigrahi H, Walker CR, Wilkins EG, et al. Intraoperative bacterial contamination in operations for joint replacement. J Bone Joint Surg Br. 1999;81:886–889.
51. Trikha V, Saini P, Mathur P, Agarwal A, Kumar SV, Choudhary B. Single versus double blade technique for skin incision and deep dissection in surgery for closed fracture: a prospective randomised control study. J Orthop Surg (Hong Kong). 2016;24:67–71.
52. Schindler OS, Spencer RF, Smith MD. Should we use a separate knife for the skin? J Bone Joint Surg Br. 2006;88:382–5.
53. Wang Q, Goswami K, Shohat N, Aalirezaie A, Manrique J, Parvizi J. Longer Operative Time Results in a Higher Rate of Subsequent Periprosthetic Joint Infection in Patients Undergoing Primary Joint Arthroplasty.J Arthroplasty. 2019;34(5):947-953.


How to Cite this article: Dhamangaonkar A C. Preventive Strategy for Surgical Site Infections in Orthopaedics. Journal of Clinical Orthopaedics July-Dec 2019;4(2):51-56.

(Abstract    Full Text HTML)   (Download PDF)