Comparative Study of BMD in Type 2 Diabetic and Non-diabetic Male Patients
Journal of Clinical Orthopaedics | Vol 9 | Issue 1 | January-June 2024 | page: 28-34 | Jata Shankar Kumar, Mohd Danish, Vikash Singh
DOI: https://doi.org/10.13107/jcorth.2024.v09i01.628
Author: Jata Shankar Kumar [1], Mohd Danish [1], Vikash Singh [1]
[1] Department of Orthopedics, Max Superspeciality Hospital, Ghaziabad, Uttar Pradesh, India.
Address of Correspondence
Dr. Mohd Danish,
Department of Orthopedics, Max Superspeciality Hospital, Ghaziabad, Uttar Pradesh, India.
E-mail: danish.shan@gmail.com
Abstract
Introduction: Osteoporosis and diabetes are both common human diseases. The prevalence of both is increasing individually and in combination, due to better detection methods and changing definitions. Due to the different pathogenesis of Type 1 and Type 2 diabetes mellitus (T2DM), one of which is a predominant autoimmune process while the other mainly a metabolic disorder, it is not surprising that there is no uniform entity of diabetic bone disease as such, although such term has been proposed in the past but never gained momentum. Paradoxically, an increased risk of osteoporotic fracture in T2DM has been repeatedly demonstrated and this was independent of bone mineral density (BMD). This association with fracture adds uncertainty around the actual association between diabetes mellitus and BMD.
This study aims to study the population of diabetes at tertiary care center when they are compared with non-diabetics in terms of BMD.
Aims of Study: The aim of this study was to determine the prevalence of osteopenia and osteoporosis in T2DM and non-diabetic male patients using Dual Energy X-ray absorptiometry (DEXA scan).
Materials and Methods: Patients for the study included male patients between 40 and 60 years of age group attending outpatient department, health checkup, and admitted in the ward of Saifee Hospital, Department of Medicine. In 200 (100 type 2 diabetic males and 100 non-diabetic males), DEXA Scan was performed in the Department of Imaging, Saifee Hospital from June 2017 to April 2019.
Results: Type 2 diabetics were significantly associated with the presence of osteoporosis compared to non-diabetics (P = 0.001). Type 2 diabetics were significantly associated with body mass index (BMI) >25 (P = 0.0) and diabetics had a significantly higher BMI compared to non-diabetics (P = 0.0001). Type 2 diabetics above 50 years of age were significantly associated with osteoporosis (P = 0.000) and diabetics with osteoporosis were significantly older compared to diabetics without osteoporosis (P = 0.0018).
Conclusion: The study concluded that there is a correlation between T2DM, increasing age, glycemic control, increased BMI, increased calcium levels, and decreased BMD. Thus, physician treating diabetes must anticipate decreased BMD and rule out or correct all of these factors in patients of diabetes to prevent the complications of decreased BMD in these groups of patients. Therefore, early detection and treatment of osteoporosis/osteopenia by estimation of BMD in Type 2 diabetic males, strict diabetic control with target hemoglobin A1c <6.5, weight control with target BMI <25, supplementation with Vitamin D3 should be advocated.
Keywords: Diabetes, osteoporosis, dual-energy X-ray absorptiometry scan.
References
1. Albright F, Reifenstein EC Jr. The Parathyroid Glands and metabolic bone disease. Whitefish, MT: Literary Licensing, LLC; 1948.
2. Barrett-Connor E, Holbrook TL. Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 1992;268:3333-7.
3. Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P. Osteopenia associated with non-insulin-dependent diabetes mellitus: What are the causes? Diabetes Res Clin Pract 1994;23:43-54.
4. Asokan AG, Jaganathan J, Philip R, Soman RR, Sebastian ST, Pullishery F. Evaluation of bone mineral density among type 2 diabetes mellitus patients in South Karnataka. J Nat Sci Biol Med 2017;8:94-8.
5. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007;92:2017-29.
6. Rucker D, Tonelli M, Coles MG, Yoo S, Young K, McMahon AW. Vitamin D insufficiency and treatment with oral vitamin D3 in northern-dwelling patients with chronic kidney disease. J Nephrol 2009;22:75-82.
7. Nicodemus KK, Folsom AR, Iowa Women’s Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001;24:1192-7.
8. Strotmeyer ES, Cauley JA, Orchard TJ, Steenkiste AR, Dorman JS. Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care 2006;29:306-11.
9. Kayath MJ, Tavares EF, Dib SA, Vieria JG. Prospective bone mineral density evaluation in patients with insulin-dependent diabetes mellitus. J Diabetes Complications 1998;12:133-9.
10. Wakasugi M, Wakao R, Tawata M, Gan N, Koizumi K, Onaya T. Bone mineral density measured by dual energy x-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. Bone 1993;14:29-33.
11. Yamagishi S, Nakamura K, Inoue H. Possible participation of advanced glycation end products in the pathogenesis of osteoporosis in diabetic patients. Med Hypotheses 2005;65:1013-5
12. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005;48:1292-9.
13. Paul RG, Bailey AJ. Glycation of collagen: The basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 1996;28:1297-310.
14. Takeuchi M, Yamagishi S. TAGE (toxic AGEs) hypothesis in various chronic diseases. Med Hypotheses 2004;63:449-52.
15. Takeuchi M, Yamagishi S. Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Med Hypotheses 2004;63:453-5.
16. Yamagishi S, Inagaki Y, Amano S, Okamoto T, Takeuchi M, Makita Z. Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties. Biochem Biophys Res Commun 2002;296:877-82.
17. Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, et al. Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 1997;8:260-70.
18. Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford) 2003;42:1242-6.
19. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of Vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007;92:2017-29.
20. Wientroub S, Eisenberg D, Tardiman R, Weissman SL, Salama R. Is diabetic osteoporosis due to microangiopathy? Lancet 1980;316:983.
21. Vogt MT, Cauley JA, Kuller LH, Nevitt MC. Bone mineral density and blood flow to the lower extremities: The study of osteoporotic fractures. J Bone Miner Res 1997;12:283-9.
22. Kao WH, Kammerer CM, Schneider JL, Bauer RL, Mitchell BD. Type 2 diabetes is associated with increased bone mineral density in Mexican-American women. Arch Med Res 2003;34:399-406.
23. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S. Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci 2007;51:64-80.
24. Meema HE, Meema S. The relationship of diabetes mellitus and body weight to osteoporosis in elderly females. Can Med Assoc J 1967;96:132.
25. Genant HK, Cooper C, Poor G, Reid I, Ehrlich G, Kanis J, et al. Interim report and recommendations of the World Health Organization task-force for osteoporosis. Osteoporos Int 1999;10:259-64.
26. Tuominen JT, Impivaara O, Puukka P, Rönnemaa TA. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 1999;22:1196-200.
27. Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castaño-Betancourt MC, Estrada K, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: The Rotterdam study. Diabetes Care 2013;36:1619-28.
28. Dutta MK, Pakhetra R, Garg MK. Evaluation of bone mineral density in type 2 diabetes mellitus patients before and after treatment. Med J Armed Forces India 2012;68:48-52.
29. Available from: https://www.who.int/chp/topics/osteoporosis.pdf [last accessed on Mar 2024].
How to Cite this article: Kumar JS, Danish M, Singh V. Comparative Study of BMD in Type 2 Diabetic and Non-diabetic Male Patients. Journal of Clinical Orthopaedics 2024 January-June;9(1):28-34. |
(Article Text HTML) (Download PDF)