Current Concept Update on Robotic Technology in Arthroplasty- A Narrative review

Journal of Clinical Orthopaedics | Vol 9 | Issue 1 |  January-June 2024 | page: 35-41 | Shobit Deshmukh, Vaibhav Bagaria

DOI: https://doi.org/10.13107/jcorth.2024.v09i01.630


Author: Shobit Deshmukh [1], Vaibhav Bagaria [1]

[1] Department of Orthopedics, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India.

Address of Correspondence
Dr. Vaibhav Bagaria,
Department of Orthopedics, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India.
E-mail: drbagaria@gmail.com


Abstract

Ensuring precise prosthesis positioning is one of the key elements for improving long-term survival rates in knee arthroplasty. The evolution of Total knee arthroplasty surgeries from Computer assisted navigation to robotic assisted techniques has improved the precision of bone preparation, component positioning and has reduced alignment outliers and surgeon-related errors. The present article gives an overview of the existing robotic arthroplasty systems available.
The present review describes the types of robots, their classification system, comparisons between various robotic assisted devices available in the market. This review highlights the key steps involved in using various systems, current concepts and the future scope of development in this field. This review also proposes the concept of intelligent alignment philosophy which is more patient specific combining different philosophies.
Keywords– Robotic Assisted techniques, current updates, intelligent alignment, total knee arthroplasty


References

1. Nunley RM, Nam D, Berend KR, Lombardi AV, Dennis DA, Della Valle CJ, et al. New total knee arthroplasty designs: Do young patients notice? Clin Orthop Relat Res 2015;473:101-8.
2. Bozic KJ, Kurtz SM, Lau E, Ong K, Chiu V, Vail TP, et al. The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 2010;468:45-51.
3. McClelland JA, Webster KE, Ramteke AA, Feller JA. Total knee arthroplasty with computer-assisted navigation more closely replicates normal knee biomechanics than conventional surgery. Knee 2017;24:651-6.
4. Figueroa F, Parker D, Fritsch B, Oussedik S. New and evolving technologies for knee arthroplasty-computer navigation and robotics: State of the art. J ISAKOS 2018;3:46-54.
5. St Mart JP, Goh EL. The current state of robotics in total knee arthroplasty. EFORT Open Rev 2021;6:270-9.
6. Banks SA. Haptic robotics enable a systems approach to design of a minimally invasive modular knee arthroplasty. Am J Orthop (Belle Mead NJ) 2009;38 2 Suppl:23-7.
7. Zlotnicki JP, O’Malley MJ. Learning curve for robot-and computer-assisted knee and hip arthroplasty. In: Robotics in Knee and Hip Arthroplasty. Cham: Springer International Publishing; 2019. p. 37-43.
8. Mont MA, Cool C, Gregory D, Coppolecchia A, Sodhi N, Jacofsky DJ. Health care utilization and payer cost analysis of robotic arm assisted total knee arthroplasty at 30, 60, and 90 days. J Knee Surg 2021;34:328-37.
9. Jacofsky DJ, Allen M. Robotics in arthroplasty: A comprehensive review. J Arthroplasty 2016;31:2353-63.
10. Shatrov J, Foissey C, Kafelov M, Batailler C, Gunst S, Servien E, et al. Functional alignment philosophy in total knee arthroplasty-rationale and technique for the Valgus morphotype using an image based robotic platform and individualized planning. J Pers Med 2023;13:212.
11. Shatrov J, Battelier C, Sappey-Marinier E, Gunst S, Servien E, Lustig S. Functional alignment philosophy in total knee arthroplasty-rationale and technique for the varus morphotype using a CT based robotic platform and individualized planning. SICOT J 2022;8:11.
12. MacDessi SJ, Griffiths-Jones W, Harris IA, Bellemans J, Chen DB. Coronal plane alignment of the knee (CPAK) classification. Bone Joint J 2021;103-B:329-37.
13. Kazarian GS, Lawrie CM, Barrack TN, Donaldson MJ, Miller GM, Haddad FS, et al. The impact of surgeon volume and training status on implant alignment in total knee arthroplasty. J Bone Joint Surg Am 2019;101:1713-23.
14. Goh GS, Lohre R, Parvizi J, Goel DP. Virtual and augmented reality for surgical training and simulation in knee arthroplasty. Arch Orthop Trauma Surg 2021;141:2303-12.
15. Jiang H, Xiang S, Guo Y, Wang Z. A wireless visualized sensing system with prosthesis pose reconstruction for total knee arthroplasty. Sensors (Basel) 2019;19:2909.
16. Hazratwala K, Brereton SG, Grant A, Dlaska CE. Computer-assisted technologies in arthroplasty: Navigating your way today. JBJS Rev 2020;8:e0157.
17. Bellemans J, Vandenneucker H, Vanlauwe J. Robot-assisted total knee arthroplasty. Clin Orthop Relat Res 2007;464:111-6.
18. Mancino F, Cacciola G, Malahias MA, De Filippis R, De Marco D, Di Matteo V, et al. What are the benefits of robotic-assisted total knee arthroplasty over conventional manual total knee arthroplasty? A systematic review of comparative studies. Orthop Rev (Pavia) 2020;12 Suppl 1:8657.

How to Cite this article: Deshmukh S, Bagaria V. Current Concept Update on Robotic Technology in Arthroplasty. Journal of Clinical Orthopaedics 2024 January-June;9(1):35-41

 (Article Text HTML)       (Download PDF)