Translate this page into:

Sagittal and Coronal Plane Fracture of Talar Body, An Unusual Combination with Medial Malleolus Fracture: A Case Report

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 52-55 | Pankaj Kumar Singh, Surendra Kumar Shukla, Satish Chandra Goel, Sachin Yashwant Kale, Rohit Mahesh Sane


Author: Pankaj Kumar Singh [1], Surendra Kumar Shukla [2], Satish Chandra Goel [1], Sachin
Yashwant Kale [3], Rohit Mahesh Sane [3]

[1] Department of Orthopaedics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India.

[2] Department of Orthopaedics, K.J. Somaiya Medical College, Sion, Mumbai, Maharashtra, India.

[3] Department of Orthopaedics, D.Y. Patil University School of Medicine, Nerul, Navi-Mumbai, Maharashtra, India.

Address of Correspondence
Dr. Rohit Mahesh Sane,
Department of Orthopaedics, D.Y. Patil University School of Medicine, Nerul, Navi-Mumbai, Maharashtra, India.
E-mail: dr.sanerohit@gmail.com


Abstract

Introduction: Fractures of the talus are relatively uncommon injuries with majority of them involving the neck region. Talar body fracture in sagittal plane in combination with medial malleolus fracture is very rare with few cases being reported in the literature earlier.

Aims and Objectives: To discuss such an unusual combination in an adolescent, which was treated with open reduction and internal fixation with screws for both talus and medial malleolus.

Materials and Methods: A 18-year-old boy with medial malleolus and sagittal plane talus fracture was treated with open reduction and internal fixation.

Conclusion: Talar body fractures in the sagittal plane and its combination with medial malleolus fracture are challenging due to its rarity and associated high degree of complications. Surgery should be planned at appropriate time considering the status of surrounding soft tissues and swelling. Proper anatomic reduction and rigid fixation with good surgical technique followed by cast immobilization and non-weight bearing for longer periods (at least 3 months or till radiological union) is the key to a good clinical outcome.

Keywords: Fracture, Talar body, Sagittal plane, Medial malleolus, Internal fixation


References

1. Fortin PT, Balazsy JE. Talus fractures: Evaluation and treatment. J Am Acad Orthop Surg 2001;9:114.
2. Hawkins LG. Fractures of the neck of the talus. J Bone Joint Surg 1970;52A:991-1002.
3. Adelaar RS. Fractures of the talus. In: Operative Foot Book. Philadelphia, PA: WB Saunders; 1990. p. 147-56.
4. Mendonca AD, Maury AC, Makwana NK. A simultaneous fracture of the tibia and talar body. Foot Ankle Surg 2004;10:45-7.
5. Shah K, Hakmi A. Unusual ankle injury a case report. Foot 2004;14:169-72.
6. Devalia KL, Ismaiel AH, Joseph G, Jesry MG. Fourteen years follow up of an unclassified talar body fracture with review of literature. Foot Ankle Surg 2006;12:85-8.
7. Saidi H, Ayach A, Fikry T. Unusual fracture of the body of the talus: a case report and literature review. Foot Medicine and Surgery 2008;24:22-4.
8. Isaacs J, Courtenay B, Cooke A, Gupta M. Open reduction and internal fixation forconcomitant talar neck, talar body, and medial malleolar fractures: A case report. J Orthop Surg 2009;17:112-5.
9. Mootha A, Kumar V, Bali K, Dhatt S, Aggarwal S. Combined talar body and medial malleolus fracture: A case report. Webmed Central Orthop 2010;1:WMC00952.
10. Mechchat A, Bensaad S, Mohammed S, Elibrahimi A, Elmrini A. Unusual ankle fracture: A case report and literature review. J Clin Orthop Trauma 2014;5:103-6.
11. Vallier HA, Nork SE, Benirschke SK, Sangeorzan BJ. Surgical treatment of talar body fractures. J Bone Joint Surg Am 2003;85:1716-24.
12. Ogawa K, Usami N. Classification of fractures of the talus: Clear differentiation between neck and body fractures. Foot Ankle Int 1996;17:748-50.
13. Sneppen O, Christensen SB, Krogsoe O, Lorentzen J. Fracture of the body of the talus. Acta Orthop Scand 1977;48:317-24.
14. Boyd HB, Knight RA. Fractures of the astragalus. South Med J 1942;35:160-7.
15. Arkesh M, Gaba S, Das S, Palanisamy JV, Trikha V. A rare combination of sagittal plane fracture of talar body with medial malleolus fracture: Case report and review of literature. J Clin Orthop Trauma 2016;7 Suppl 1:30-4.

How to Cite this article: Singh PK, Shukla SK, Goel SC, Kale SY, Sane RM. Sagittal and Coronal Plane Fracture of Talar Body, An Unusual Combination with Medial Malleolus Fracture: A Case Report.. Journal of Clinical Orthopaedics Jul-Dec 2021;6(2):52-55.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

Financial Ignorance among Orthopedic Surgeons: A Survey In COVID-19 Era

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 8-11 | Sachin Kale, Ajit Chalak, Sanjay Dhar, Prasad Chaudhari, Sushmit Singh, Aditya Gunjotikar


Author: Sachin Kale [1], Ajit Chalak [1], Sanjay Dhar [1], Prasad Chaudhari [1], Sushmit Singh [1], Aditya Gunjotikar [1]

[1] Department of Orthopaedics, Dr. D. Y. Patil Medical College and Hospital, Nerul, Navi Mumbai, India

Address of Correspondence
Dr. Sushmit Singh,
Department of Orthopaedics, Dr. D Y Patil Medical College and Hospital, Nerul, Navi Mumbai, India.
E-mail: drsushmits@gmail.com


Abstract

Background: COVID-19 pandemic has severely affected the finances of orthopedic surgeons around the globe due to recurring lockdowns and fewer elective surgeries. It has forced surgeons to reflect on their wealth management status and look for a second source of income as well.
Objectives: The objectives of the study were to determine the effect of the COVID-19 pandemic on the personal finances of orthopedic surgeons and gauge their knowledge regarding the stock market as a second source of income.

Methods: An online survey was conducted among the orthopedic surgeons practicing in Maharashtra, India. The survey included assessment of demographic data, financial knowledge, knowledge of the stock market, and wealth management status.

Results: Most respondents (75.6%) were forced to think about the second source of income after the COVID-19 pandemic. Seventy-nine percent of surgeons felt the need for training for investment in stock markets.
Conclusion: Most of the respondents lack proper knowledge about funds management and retirement planning. This study indicates a strong need for formal education of orthopedic surgeons in the field of personal finance, stock markets, and retirement planning.

Keywords: COVID-19, orthopedic surgeons, personal finance


References

1. West CP, Shanafelt TD, Kolars JC. Quality of life, burnout, educational debt, and medical knowledge among internal medicine residents. JAMA 2011;306:952-60.
2. Finney B, Mattu G. National family medicine resident survey. Part 1: Learning environment, debt, and practice location. Can Fam Physician 2001;47:117, 120, 126-8.
3. Jennings JD, Quinn C, Ly JA, Rehman S. Orthopaedic surgery resident financial literacy: An assessment of knowledge in debt, investment, and retirement savings. Am Surg 2019;85:353-8.
4. McKillip R, Ernst M, Ahn J, Tekian A, Shappell E. Toward a resident personal finance curriculum: Quantifying resident financial circumstances, needs, and interests. Cureus 2018;10:e2540.
5. Ramme AJ, Patel M, Patel KA, Montag WH, Schau AJ, Sabo SI, et al. Personal finance primer for the future orthopaedic surgeon: A starting point. JB JS Open Access 2021;6:e20.00006.
6. Cull WL, Katakam SK, Starmer AJ, Gottschlich EA, Miller AA, Frintner MP. A study of pediatricians’ debt repayment a decade after completing residency. Acad Med 2017;92:1595-600.
7. Connelly P, List C. The effect of understanding issues of personal finance on the well-being of physicians in training. WMJ 2018;117:164-6.

How to Cite this article: Kale S, Chalak A, Dhar S, Chaudhari P, Singh S, Gunjotikar A. Financial Ignorance among Orthopedic Surgeons: A Survey in COVID-19 Era. Journal of Clinical Orthopaedics July-Dec 2021;6(2):8-11.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

A multidisciplinary approach to the management of spinal metastasis: A review article

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 16-22 | Siddharth Badve, Arjun Dhawale, Kshitij Chaudhary, Chetan Anchan


Author: Siddharth Badve [1], Arjun Dhawale [2], Kshitij Chaudhary [3], Chetan Anchan [4]

[1] Orthopaedic Spine Surgeon, Musculoskeletal Institute, Geisinger Health System; MS (Orthopedics), Lewistown, Pennsylvania, United States of America.

[2] Orthopaedic Spine Surgeon, Department of Orthopedics, Sir H.N. Reliance Foundation Hospital, Mumbai, Maharashtra, India.

[3] Orthopaedic Spine Surgeon, Department of Orthopaedics, P.D. Hinduja National Hospital and Research Centre, Mumbai, Maharashtra, India.

[4] Orthopaedic Onco-surgeon, Department of Orthopaedics, Sir H.N. Reliance Foundation Hospital, Girgaon, Mumbai, Maharashtra, India.

Address of Correspondence
Dr. Siddharth Badve,
Orthopaedic Spine Surgeon, Musculoskeletal Institute, Geisinger Health System; MS (Orthopedics), Lewistown, Pennsylvania, United States of America
E-mail: siddharthbadve@hotmail.com


Abstract

Spinal metastasis is a frequent occurrence in patients presenting with advanced malignancy. The burden of this condition is on rise, especially with the availability of aggressive treatment regimens for the primary disease and the improvement in the patient survival. Thoracic spine is the most affected region. The likely source of the primary is from the breast, prostate, lung, thyroid, or kidney. Certain hematological and other malignant conditions can also develop an early spinal involvement that requires timely evaluation and management. The goals for the management of the spinal lesion include preservation of the neurological function, pain control, and maintenance of spinal stability. On the whole, the aim of the treatment continues to palliation in majority of the scenarios. The management strategy is based on the factors that include the patient condition, life expectancy, nature of the tumor pathology, extent of spinal cord compression, severity of neurological deficit, pain control, and the effect on spinal stability. A multidisciplinary approach involving medical oncology, radiation oncology, spine surgery, palliative care and other subspecialtiess forms the cornerstone of the management. Although giant strides have been reported in the advancement of the treatment for spinal metastasis, majority of these avenues are beyond the reach of the patient population from the developing societies. Lack of referral facilities, resource constraints, and geographic disparities are major impediments. The lack of awareness and consensus on the management protocols within the treatment team and the medical community in general poses another challenge in providing an acceptable standard of care. This article offers an insight into the principles that guide the management of spinal metastasis. The application of these principles in the background of the resource constraints that are unique to the South Asian population has also been addressed. This is a synopsis on the multidisciplinary approach to the diagnosis and management of spinal metastasis along with the review of the relevant literature.

Keywords: Vertebral metastasis, spinal stability, pathological fracture, spinal cord compression


References

1. Rose PS, Buchowski JM. Metastatic disease in the thoracic and lumbar spine: Evaluation and management. J Am Acad Orthop Surg 2011;19:37-48.
2. White AP, Kwon BK, Lindskog DM, Friedlaender GE, Grauer JN. Metastatic disease of the spine. J Am Acad Orthop Surg 2006;14:587-98.
3. Kirchhoff SB, Becker C, Duerr HR, Reiser M, Baur-Melnyk A. Detection of osseous metastases of the spine: Comparison of high resolution multi-detector-CT with MRI. Eur J Radiol 2009;69:567-73.
4. Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastasis: Experimental observations. Clin Radiol 1967;18:158-62.
5. Tatsui H, Onomura T, Morishita S, Oketa M, InoueT. Survival rates of patients with metastatic spinal cancer after scintigraphic detection of abnormal radioactive accumulation. Spine (Phila Pa 1976) 1996;21:2143-8.
6. Rougraff BT, Kneisl JS, Simon MA. Skeletal metastases of unknown origin: A prospective study of a diagnostic strategy. J Bone Joint Surg Am 1993;75:1276-81.
7. Bredella MA, Essary B, Torriani M, Ouellette HA, Palmer WE. Use of FDG-PET in differentiating benign from malignant compression fractures. Skeletal Radiol 2008;37:405-13.
8. Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, EvenSapir E. Malignant involvement of the spine: Assessment by 18F-FDG PET/CT. J Nucl Med 2004;45:279-84.
9. Lis E, Bilsky MH, Pisinski L, Boland P, Healey JH, O’malley B, et al. Percutaneous CT-guided biopsy of osseous lesion of the spine in patients with known or suspected malignancy. AJNR Am J Neuroradiol 2004;25:1583-8.
10. Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: Arandomised trial. Lancet 2005;366:643-8.
11. Cole JS, Patchell RA. Metastatic epidural spinal cord compression. Lancet Neurol 2008;7:459-66.
12. Sharan AD, Szulc A, Krystal J, Yassari R, Laufer I, Bilsky MH. The integration of radiosurgery for the treatment of patients with metastatic spine diseases. J Am Acad Orthop Surg 2014;22:447-54.
13. Maranzano E, Bellavita R, Rossi R, de Angelis V, Frattegiani A, Bagnoli R, et al. Short-course versus split-course radiotherapy in metastatic spinal cord compression: Results of a Phase III, randomized, multicenter trial. J Clin Oncol 2005;23:3358-65.
14. Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976) 2005;30:2186-91.

15. Tokuhashi Y, Uei H, Oshima M, Ajiro Y. Scoring system for prediction of metastatic spine tumor prognosis. World J Orthop 2014;5:262-71.

16.  Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neo-plastic disease: An evidence-based approach and expert consensus from the spine oncology study group. Spine (Phila Pa 1976) 2010;35:E1221-9.

17. Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, et al. The NOMS framework: Approach to the  treatment of spinal metastatic tumors. Oncologist 2013;18:744-51.

18. Health Quality Ontario. Vertebral augmentation involving vertebroplasty or kyphoplasty for cancer-related vertebral compression fractures: A systematic review. Ont Health Technol Assess Ser 2016;16:1-202.

How to Cite this article: Badve S, Dhawale A, Chaudhary K, Anchan C. A multidisciplinary approach to the management of spinal metastasis: A review article. Journal of Clinical Orthopaedics Jul-Dec 2021;6(2):16-22.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

A Rare Case Report of Neglected Chronic Dislocation of Distal Interphalangeal Joint Finger

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 49-51 | Rajesh Lalchandani, Mohit Singh, Rakesh Parmar, Rajesh Kumar Yadav


Author: Rajesh Lalchandani [1], Mohit Singh [1], Rakesh Parmar [1], Rajesh Kumar Yadav [1]

[1] Department of Orthopedics, ESI Post Graduate Institute of Medical Science and Research, New Delhi, India.

Address of Correspondence
Dr. Mohit Singh,
Department of Orthopedics, ESI Post Graduate Institute of Medical Science and Research, New Delhi – 110 015, India
E-mail: monu.azad@gmail.com


Abstract

Neglected irreducible dislocation of the distal interphalangeal (DIP) joint due to low energy trauma is a rare traumatic condition and only 6–7 cases have been reported in literature worldwide. Herein, we present a case of chronic dislocation of the DIP joint which got neglected due to lockdown precipitated by COVID-19. It was caused by low energy trauma of slip and fall from stairs.

Keywords: Axillary block, Distal interphalangeal joint, Finger interphalangeal joint, Joint dislocation, Radial mid-lateral incision


References

1. Shiota J, Kawamura D, Iwasaki N. Chronic dislocation of the distal interphalangeal joints. J Trauma Injury 2019;32:47-50.
2. Khuri SM. Irreducible dorsal dislocation of the distal interphalangeal joint of the finger. J Trauma 1984;24:456-7.
3. Murakami Y. Irreducible dislocation of the distal interphalangeal joint. J Hand Surg Br 1985;10:231-2.
4. Phillips JH. Irreducible dislocation of a distal interphalangeal joint: Case report and review of literature. Clin Orthop Relat Res 1981;154:188-90.
5. Pohl AL. Irreducible dislocation of a distal interphalangeal joint. Br J Plast Surg 1976;29:227-9.
6. Banerji S, Bullocks J, Cole P, Hollier L. Irreducible distal interphalangeal joint dislocation: A case report and literature review. Ann Plast Surg 2007;58:683-5.
7. Palmer AK, Linscheid RL. Irreducible dorsal dislocation of the distal interphalangeal joint of the finger. J Hand Surg Am 1977;2:406.
8. Selig S, Schein A. Irreducible buttonhole dislocations of the fingers. J Bone Joint Surg Am 1940;22:436-41.
9. Simpson MB, Greenfield GQ. Irreducible dorsal dislocation of the small finger distal interphalangeal joint: The importance of roentgenograms–case report. J Trauma 1991;31:1450-4.
10. Stripling WD. Displaced intra-articular osteochondral fracture-cause for irreducible dislocation of the distal interphalangeal joint. J Hand Surg Am 1982;7:77-8.
11. Thayer DT. Distal interphalangeal joint injuries. Hand Clin 1988;4:1-4.
12. Yamamoto S, Ochiai N, Matsumoto M. Irreducible dorsal dislocation of the distal interphalangeal joint: Report of two cases. Kanto J Orthop Traumatol 1996;27:79-81.
13. Ghobadi F, Anapolle DM. Irreducible distal interphalangeal joint dislocation of the finger: A new cause. J Hand Surg Am 1994;19:196-8.
14. Montero Lopez N, Paksima N. Perilunate Injuries and dislocations etiology, diagnosis, and management. Bull Hosp Joint Dis 2018;76:337.

How to Cite this article: Lalchandani R, Singh M, Parmar R, Yadav RK. A Rare Case Report of Neglected Chronic Dislocation of Distal Interphalangeal Joint Finger. Journal of Clinical Orthopaedics Jul-Dec 2021;6(2):49-51.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

Use of mini-fragment plates in fracture fixation

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 2-7 | Vikas Kulshrestha, Abin Stanley, Santhosh Kumar, Munish Sood


Author: Vikas Kulshrestha [1], Abin Stanley [1], Santosh Kumar [1], Munish Sood [2]

[1] Department of Orthopaedics, Command Hospital Air Force Station, Bengaluru, Karnataka, India

[2] Department of Orthopaedics, INHS Asvini, Mumbai, Maharashtra, India

Address of Correspondence
Lt Col Munish Sood,
Department of Orthopaedics & Traumatology, INHS Asvini, Mumbai – 500 004, Maharashtra, India.
E-mail: soodmunishafmc@gmail.com


Abstract

Background: Over the last two decades improved research in basic sciences has resulted in a better understanding of pathomechanics of skeletal injury. Today we have modern implants and instrumentation which can allow fracture fixation while minimizing soft tissue trauma. The use of mini fragment low profile locking plates is one such technique that is now increasingly being used to implement fragment specific fracture fixation in skeletal injuries.
Methods: At our level III military trauma centre we introduced the use of mini fragment plates in all types of fracture types in 2019 and over the next twelve months we prospectively recorded data of 44 fracture cases of various long and small bones. We have used these plates with different objectives in various intraarticular, metaphyseal or diaphyseal fractures in a manner to augment, supplement or substitute the use of larger implants. We have described the exact method of use in each case.
Results: Out of 44 cases in 42 we achieved fracture union with no loss of reduction and in one case there was a failure of fixation and in one case infected nonunion.
Conclusion: Mini-fragment plates are a very efficient tool available to carry out reduction and fixation of many fracture types and should be kept as a part of instrumentation and implant set for all cases of fracture fixation.

Keywords: Mini-fragment plates, fragment specific, fracture fixation


References

1. Benirschke SK, Henley MB, Ott JW. Proximal one-third tibial fracture solutions. Orthop Trans. 1995;18:1055-6.
2. Archdeacon MT, Wyrick JD. Reduction plating for provisional fracture fixation. J Orthop Trauma. 2006 Mar 1;20(3):206-11.
3. Bogdan Y, Tornetta III P. Fragment-Specific Fixation of Proximal Tibia Fractures: Case Report and Surgical Technique. J Ortho Trauma 2018 e 1-5.
4. Sadek AF, Ahmed MA, Kader MA, et al. Lateral condylar retrograde humeral nail for management of high-energy distal humeralfractures. J Orthop Surg. 2019 Ma y17;27(2):2309499019847922.
5. Knox R, Curran P, Herfat S, et al.. The influence of mini-fragment plates on the mechanical properties of long-bone plate fixation. Ota International. 2019 Sep 1;2(3):e034.
6. Medoff RJ. Immediate internal fixation and motion of comminuted distal radius fractures using a new fragment. specific fixation system. Orthop Trans. 1998;22:165.
7. Bishop JA, Castillo TN. Provisional mini-fragment plate fixation in clavicle shaft fractures. Am J Orthop. 2013 Oct 470-72.
8.Hozack BA, Tosti RJ. Fragment-specific fixation in distal radius fractures. Curr Rev Musculoskelat Med. 2019 Jun;12(2):190-7.
9. Russell Jr GV, Jarrett CA, Jones CB, et al.. Management of distal humerus fractures with minifragment fixation. J Orthop Trauma. 2005 Aug 1;19(7):474-9.
10. Dang KH, Ornell SS, Huynh RA, DeLeon JC, Pesek R, Karia RA. Early clinical and radiographic outcomes of a minifragment, low profile plating system in tibial plafond fractures. Injury. 2019 Oct 1;50(10):1773-80.
11. Gentile J, Taylor BC, Chan R, French B. Clinical comparison of minifragment plates versus conventional semitubular plates for fixation of distal fibula fractures. HSS Journal®. 2015 Jul;11(2):148-53.

How to Cite this article: Kulshrestha V, Stanley A, Kumar S, Sood M. ‘Use of mini-fragment plates in
fracture fixation’. Journal of Clinical Orthopaedics July-Dec 2021;6(2):2-7.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

Osteoblastoma of the lumbar spine in an adolescent: A case report and review of literature

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 45-48 | Bhushan Sagade, Sarang Rokade, Arjun Dhawale, Abhay Nene


Author: Bhushan Sagade [1], Sarang Rokade [1], Arjun Dhawale [1], Abhay Nene [1]

[1] Department of Paediatric Orthopaedics, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai 400012, India

Address of Correspondence
Dr. Dhawale Arjun A,
Department of Paediatric Orthopaedics, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai 400012, India
E-mail: arjundhawale@hotmail.com


Abstract

Introduction: Osteoblastomas are primary bone tumors representing 1% of all bone tumors and 10% of all spinal osseous neoplasms with a predilection for posterior elements.
Case Report:  A 13-year-old boy with insidious backache for six months presented with progressive radiating paraesthesia and claudication, restricted lumbar motion and positive straight leg test bilaterally with weakness of left ankle dorsiflexion. Radiograph showed an subtle expansile lytic lesion in the L3 posterior elements. CT and MRI revealed a space-occupying lesion of the L3 vertebra lamina, involving the left pedicle causing severe spinal canal stenosis. Excision of the posterior elements of the L3 vertebra including the facet and left pedicle and short segment fixation from L2-L4 using autogenous rib was done.

At two years postoperatively, he was asymptomatic, neurologically normal, showing radiographic evidence of union with no recurrence.
Conclusions: Autogenous structural rib can be used for posterolateral fusion after osteoblastoma excision with potential instability.
Keywords: Osteoblastoma, back pain, rib graft, postero-lateral fusion, en-bloc resection


References

1. Healey JH, Ghelman B. Osteoid osteoma and osteoblastoma. Current concepts and recent advances. Clin Orthop Relat Res. 1986 Mar;(204):76-85.
2. Kan P, Schmidt MH. Osteoid osteoma and osteoblastoma of the spine. Neurosurg Clin N Am. 2008 Jan;19(1):65-70.
3. Chi JH, Bydon A, Hsieh P, Witham T, Wolinsky JP, Gokaslan ZL. Epidemiology and demographics for primary vertebral tumors. Neurosurg Clin N Am. 2008 Jan;19(1):1-4.
4. Galgano MA, Goulart CR, Iwenofu H, Chin LS, Lavelle W, Mendel E. Osteoblastomas of the spine: a comprehensive
review. Neurosurg Focus. 2016 Aug;41(2):E4.
5. Elder BD, Goodwin CR, Kosztowski TA, Lo SF, Bydon A, Wolinsky JP, Jallo GI, Gokaslan ZL, Witham TF, Sciubba DM.
Surgical Management of Osteoblastoma of the Spine: Case Series and Review of the Literature. Turk Neurosurg. 2016;26(4):601-7.
6. Harrop JS, Schmidt MH, Boriani S, Shaffrey CI. Aggressive “benign” primary spine neoplasms: osteoblastoma aneurysmal bone cyst, and giant cell tumor. Spine (Phila Pa 1976). 2009 Oct 15;34(22 Suppl):S39-47.
7. Boriani S, Amendola L, Bandiera S, Simoes CE, Alberghini M, Di Fiore M, Gasbarrini A. Staging and treatment of osteoblastoma in the mobile spine: a review of 51 cases. Eur Spine J. 2012 Oct;21(10):2003-10.
8. Ruggieri P, Huch K, Mavrogenis AF, Merlino B, Angelini A. Osteoblastoma of the sacrum: report of 18 cases and analysis of the literature. Spine (Phila Pa 1976). 2014 Jan 15;39(2):E97-E103.
9. Kadhim M, Binitie O, O’Toole P, Grigoriou E, De Mattos CB, Dormans JP. Surgical resection of osteoid osteoma and
osteoblastoma of the spine. J Pediatr Orthop B. 2017 Jul;26(4):362-369.
10. Reynolds JJ, Rothenfluh DA, Athanasou N, Wilson S, Kieser DC. Neoadjuvant denosumab for the treatment of a sacral osteoblastoma. Eur Spine J. 2018 Jul;27(Suppl 3):446-452.

How to Cite this article: Sagade BS, Rokade SN, Dhawale AA, Nene AM. Osteoblastoma of the lumbar spine in an adolescent: A case report and review of literature. Journal of Clinical Orthopaedics Jul-Dec 2021;6(2):45-48.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

Home based unsupervised rehabilitation protocol following rotator cuff repair has good outcomes: A prospective study

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  July-Dec 2021 | page:12-15 | Rohan A Habbu


Author: Rohan A Habbu

[1] Department of Upper Limb Surgery, Prime Health Clinic Ground floor, Ram Janki Apts Subhash Road, Vile Parle East, Mumbai 400057, India

Address of Correspondence
Dr. Rohan A Habbu,
Department of Upper Limb Surgery, Prime Health Clinic Ground floor,
Ram Janki Apts Subhash Road, Vile Parle East, Mumbai 400057, India
E-mail: dr_habbu@yahoo.com


Abstract

Background: Rehabilitation after rotator cuff repair achieves good results but it involves time and costs. A simple home based program will reduce costs, time to travel and chance of exposure in a pandemic scenario. The objective of the study was to assess outcomes of home based rehabilitation protocol following rotator cuff repair.
Methods: This was a prospective study of 42 patients who underwent rotator cuff repair followed by an unsupervised home based rehabilitation protocol. The tears were identified using clinical examination and Magnetic Resonance Imaging. The cuff repair was done with mini open incision technique. The patients were taught an exercise protocol, which they did by themselves at home. There was no daily supervision by the treating surgeon or a physiotherapist. The study measured pain scores, return to work, range of motion and failures at one year.
Results: Mean duration of followup was 14 months. Visual Analogue Score for pain improved from preoperative mean 7.5 to followup mean 1.3. Disability of the Arm, Hand and Shoulder score, measured in 26 patients improved from preoperative mean 33.2 to followup mean 4.5. Range of motion improved in 39 patients. Cuff strength was normal in 39 patients. 37 patients returned to full work by three months. There were three failures with one patient developing significant stiffness and two patients showing a retear. The retear was seen in patients with large retracted tears and the repair was done under tension.
Conclusion: Home based exercise protocol for postoperative rehabilitation in rotator cuff repairs can achieve good results in carefully selected patients. The study does not recommend this for large tears with difficult repairs. Since the patients are doing the postoperative rehabilitation at home, this reduces the costs, time lost in travel and exposure to external factors.
Keywords: Rotator cuff, mini open repair, unsupervised rehabilitation, motion


References

1. Beaudreuil J, Dhénain M, Coudane H, Mlika-Cabanne N. Clinical practice guidelines for the surgical management of rotator cuff tears in adults. Orthopaedics & Traumatology: Surgery & Research 2010; 96: 175–179.
2. Huisstede BM, Koes BW, Gebremariam L, Keijsers E, Verhaar JA. Current evidence for effectiveness of interventions to treat rotator cuff tears. Manual therapy 2011; 16: 217–230.
3. Hayes K, Ginn KA, Walton JR, Szomor ZL, Murrell GA. A randomised clinical trial evaluating the efficacy of physiotherapy after rotator cuff repair. Aust J Physiother 2004;50:77-83.
4. Roddey TS, Olson SL, Gartsman GM, Hanten WP, Cook KF. A randomized controlled trial comparing 2 instructional
approaches to home exercise instruction following arthroscopic full-thickness rotator cuff repair surgery. J Orthop Sports Phys Ther 2002; 32: 548-559.
5. Büker NA, Akkaya S, Akkaya N. Comparison of the results of supervised physiotherapy program and home-based exercise program in patients treated with arthroscopic-assisted miniopen rotator cuff repair. Eklem Hastalik Cerrahisi 2011; 22(3):134-139.
6. Lee BG, Cho NS, Rhee YG. Effect of two rehabilitation protocols on range of motion and healing rates after arthroscopic rotator cuff repair: aggressive versus limited early passive exercises. Arthroscopy 2012; 28(1): 34-42.
7. Baumgarten KM, Vidal AF, Wright RW. Rotator cuff rehabilitation. A level 1 and level 2 systematic review. Sports Health 2009;1(2):125-130.
8. Holmgren T, Oberg B, Sjöberg I, Johansson K. Supervised strengthening exercises versus home-based movement
exercises after arthroscopic acromioplasty: a randomized clinical trial. J Rehabil Med 2012; 44(1): 12-18.
9. Andersen NH, Sojbjerg JO, Johannsen HV, Sneppen O. Selftraining versus physiotherapist-supervised rehabilitation of the shoulder in pa- tients treated with arthroscopic subacromial decompression: a clinical randomized study. J Shoulder Elbow Surg 1999; 8: 99–101.
10. Lisinski P, Huber J, Wilkosz P, Witkowska A, Wytrazek M,Samborski W et al. Supervised versus uncontrolled rehabilitation of patients after rotator cuff repair-clinical and neurophysiological comparative study. Int. J Artif Organs 2012;35: 45–54.
11. Longo UG, Berton A, Ambrogioni LR, Lo Presti D, Carnevale A, Candela V et al. Cost-Effectiveness of Supervised versus Unsupervised Rehabilitation for Rotator-Cuff Repair: Systematic Review and Meta-Analysis. Int J Environ Res
Public Health 2020;17:2852.
12. Song SJ, Jeong TH, Moon JW, Park HV, Lee SY, Koh KH. Short-term Comparison of Supervised Rehabilitation and
Home- based Rehabilitation for Earlier Recovery of Shoulder Motion, Pain, and Function after Rotator Cuff Repair. Clinics in Shoulder and Elbow 2018; 21(1): 15-21.
13. Gallagher BP, Bishop ME, Tjoumakaris FP, Freedman KB. Early versus delayed rehabilitation following arthroscopic
rotator cuff repair: A systematic review. Phys Sportsmed 2015;43(2): 178-187.

How to Cite this article: Habbu RA. Home based unsupervised rehabilitation protocol following rotator
cuff repair has good outcomes: A prospective study. Journal of Clinical Orthopaedics July-Dec 2021;6(2):12-15.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

Unusual Finding of Gouty Tophus in Adult Male with Acute Locked Knee: A Rare Case Report

Journal of Clinical Orthopaedics | Vol 6 | Issue 2 |  Jul-Dec 2021 | page: 42-44 | Febyan, I Gusti Ngurah Paramartha Wijaya Putra, Made Deker, Agus Eka Wiradiputra


Author: Febyan [1], I Gusti Ngurah Paramartha Wijaya Putra [1], Made Deker [1], Agus Eka Wiradiputra [1]

[1] Department of Orthopaedics & Traumatology, Bhayangkara Denpasar Hospital, Bali, Indonesia

Address of Correspondence
Dr. Febyan,
Department of Orthopaedics & Traumatology, Bhayangkara Denpasar Hospital, Bali, Indonesia
E-mail: febyanmd@gmail.com


Abstract

Gout is an inflammatory disease commonly characterized by tophus deposits containing uric acid crystals in the intraarticular joints. An acute locked joint due to gouty tophus formation is a rare finding. This case describes a 36-year-old man with sudden pain and locking in the knee joint. Physical examination, plain radiography, and serum uric acid examination showed unremarkable results. Further investigation with diagnostic arthroscopy confirmed tophaceous gout as the sole cause of an acutely locked knee. The patient exhibited satisfactory clinical results following surgical intervention under arthroscopy and the administration of urate-lowering agents. This case highlights the probability of tophus deposition as the cause of an acute locked knee, despite unremarkable initial presentation. The awareness regarding this case should be raised, especially on emphasizing arthroscopy as a cost-effective diagnostic and therapeutic modality in patient management.

Keywords: Arthroscopy, gouty tophi, knee joint, rare case


References

1. Ozturk R, Atalay IB, Bulut EK, Beltir G, Yilmaz S, Gungor BS. Place of orthopedic surgery in gout. Eur J Rheumatol 2019;6(4):212-5.
2. Dehlin M, Drivelegka P, Sigurdardottir V, Svärd A, Jacobsson LT. Incidence and prevalence of gout in Western Sweden. Arthritis Res Ther 2016;18:164.
3. Mohd A, Gupta Ed, Loh Y, Gandhi C, D’Souza B, Gun S. Clinical characteristics of gout: a hospital case series. Malays Fam Physician 2011;6(2-3):72-3.
4. Amber H. Singh VA, Azura M. Gouty tophi mimicking synovial sarcoma of the knee joint. Arch of Rheumatol 2012;27(3):208-11.
5. Ashar NAK, Hussin P, Nasir MNM, Mawardi M. Degenerative osteophyte causing acute locked knee in a young man: a case report. Malays J Med Sci 2019;15(3):161-3. .
6. Bansal P, Deehan DJ, Gregory RJH. Diagnosing the acutely locked knee. Injury 2002;33(6):495-8.
7. Hwang HJ, Lee SH, Han SB, Park SY, Jeong WK, Kim CH, et al. Anterior cruciate ligament rupture in gouty arthritis. Knee Surg Sports Traumatol Arthrosc 2012;20(8):1540-2.
8. Wong JK, Chan WH. Giant cell tumor of the tendon sheath arising from anterior cruciate ligament. New Horiz Clin Case Rep 2017;2:31.
9. Chatterjee S, Ilaslan H. Painful knee locking caused by gouty tophi successfully treated with allopurinol. Nat Clin Pract Rheumatol 2008;4(12):675-9.
10. Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective – Areview. J Adv Res 2017;8(5):495-511.
11. McQueen FM, Chhana A, Dalbeth N. Mechanisms of joint damage in gout: evidence from cellular and imaging studies. Nat Rev Rheumatol 2012;8(3):173-81.
11. Melloni P, Valls R, Yuguero M, Sáez A. An unusual case of tophaceous gout involving the anterior cruciate ligament. Arthroscopy 2004;20(9):e117-21.
13. Ko KH, Hsu YC, Lee HS, Lee CH, Huang GS. Tophaceous gout of the knee: revisiting MRI patterns in 30 patients. J Clin Rheumatol 2010;16(5):209-14.
14. Bloch C, Hermann G, Yu TF. A radiologic reevaluation of gout: a study of 2,000 patients. AJR Am J Roentgenol 1980;134(4):781-7.
15. Pan F, Li Q, Tang X, Xue J, Li J. Method and effectiveness of arthroscopic debridement for treating gouty arthritis of the knee. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi (Chinese Journal of Reparative and Reconstructive Surgery)
2011;25(8):937-40 (in Chinese).
16. Patel UJ, Freetly TJ, Yueh J, Campbell C, Kelly MA. Chronic tophaceous gout presenting as bilateral knee masses in an adult patient: a case report. J Orthop Case Rep 2019;9(5):16-9.

How to Cite this article: Febyan, Putra IGNPW, Deker M, Wiradiputra AE. Unusual Finding of Gouty Tophus in Adult Male with Acute Locked Knee: A Rare Case Report. Journal of Clinical Orthopaedics Jul-Dec 2021;6(2):42-44.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

Guidelines on Infection after ACL Reconstruction

Journal of Clinical Orthopaedics | Vol 6 | Issue 1 |  Jan-Jun 2021 | page: 53-59 | I. Geethan, Raju Easwaran


Author: I. Geethan [1], Raju Easwaran [2]

[1] Department of Orthopaedics, Dhanalakshmi Srinivasan Medical College, Siruvachur, Perambalur

[2] Director, Shree Meenakshi Orthopaedics & Sports Medicine Clinic

 

Address of Correspondence
Dr. I. Geethan,
Department of Orthopaedics, Dhanalakshmi Srinivasan Medical College, Siruvachur, Perambalur
E-mail: igeethan@gmail.com


Abstract

Infection after ACL reconstruction (ACLR) is a rare but disastrous event that increases the cost of treatment and affects the short and long term outcome. Clinicians must be aware of the best preventive practices and be knowledgeable regarding the early diagnosis and prompt management to minimise the complications following ACLR. Recent literature has identified the risk factors for infection after ACLR and has proposed recommendations for its management. This article reviews the recent literature and proposes a plan for prevention of infection and its treatment. Specifically, the use of Bone Patellar Tendon Bone graft in patients at a higher risk of infection and Vancomycin wrapping of graft are the two interventions that can reduce the risk of infection. A surgeon must have a low threshold for suspecting infection and early graft preserving arthroscopic lavage must be performed on suspicion of infection. Culture directed antibiotics must be given for 6 weeks following infection. Graft and hardware must be removed in patients requiring repeat debridement. Revision ACLR is offered only for those patients who report instability.
Keywords: Infection, ACL reconstruction, Prevention, Management


References

  1. Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, et al. Anew 2D and 3D imaging approach to musculo-skeletal
    physiology and pathology with low-dose radiation and the standing position: The EOS system. Bull Acad Natl Med 2005;189:287-300.
  2. Wybier M, Bossard P. Musculoskeletal imaging in progress: The EOS imaging system. J Bone Spine 2013;80:238-43.
  3. Melhem E, Assi A, El Rachkidi R, Ghanem I. EOS (®) biplanar X-ray imaging: Concept, developments, benefits, and limitations.
    J Child Orthop 2016;10:1-14.
  4. Garg B, Mehta N, Bansal T, Malhotra R. EOS® imaging: Concept and current applications in spinal disorders. J Clin Orthop Trauma 2020;11:786-93.
  5. Mishra P, Lal A, Mohindra M, Mehta N, Joshi D, Chaudhary D. Incidence, management and outcome assessment of post operative infection following single bundle and double bundle acl reconstruction. J Clin Orthop Trauma [Internet]. 2018 Apr 1 [cited 2021 Jan 17];9(2):167–71. Available from: https://pubmed.ncbi.nlm.nih.gov/29896022/.
  6. Brophy RH, Wright RW, Huston LJ, Nwosu SK, Spindler KP, Kaeding CC, et al. Factors associated with infection following anterior cruciate ligament reconstruction. J Bone Jt Surg – Am Vol. 2015 Mar 18;97(6):450–4.
  7. Barbara K, Alan I, Goran V, Saša J. Knee infection following anterior cruciate ligament reconstruction: a cohort study of one thousand, eight hundred and ninety one patients from the single-centre database. Int Orthop [Internet]. 2020 May 1 [cited 2 0 2 1 J a n 1 7 ] ; 4 4 ( 5 ) : 8 6 9 – 7 5 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/32114657/
  8. Wang C, Lee YH a. D, Siebold R. Recommendations for the management of septic arthritis after ACL reconstruction. Vol. 22, Knee surgery, sports traumatology, arthroscopy  : official journal of the ESSKA. 2014. p. 2136–44.
  9. Otchwemah R, Naendrup JH, Mattner F, Tjardes T, Bäthis H, Shafizadeh S. Effective graft preservation by following a standard protocol for the treatment of knee joint infection after anterior cruciate ligament reconstruction. J Knee Surg. 2019;32(11):1111–20.
  10. Torres-Claramunt R, Gelber P, Pelfort X, Hinarejos P, Leal[1]Blanquet J, Pérez-Prieto D, et al. Managing septic arthritis after knee ligament reconstruction. Vol. 40, International Orthopaedics. Springer Verlag; 2016. p. 607–14.
  11. Nag HL, Neogi DS, A.R. N, V. AK, Yadav CS, Singh U. Tubercular Infection After Arthroscopic Anterior Cruciate Ligament Reconstruction. Arthrosc – J Arthrosc Relat Surg. 2009 Feb;25(2):131–6.
  12. Muscolo DL, Carbo L, Aponte-Tinao LA, Ayerza MA, Makino A. Massive bone loss from fungal infection after anterior cruciate ligament arthroscopic reconstruction. Clin Orthop Relat Res. 2009;467(9):2420–5.
  13. Sun L, Zhang L, Wang K, Wang W, Tian M. Fungal osteomyelitis after arthroscopic anterior cruciate ligament reconstruction: Acase report with review of the literature. Knee [Internet]. 2012 Oct [cited 2021 Jan 17];19(5):728–31. Available from: https://pubmed.ncbi.nlm.nih.gov/22209694/.
  14. Vallianatos PG, Tilentzoglou AC, Koutsoukou AD. Septic Arthritis Caused by Erysipelothrix rhusiopathiae Infection after Arthroscopically Assisted Anterior Cruciate Ligament Reconstruction. Arthroscopy [Internet]. 2003 [cited 2021 Jan 1 7 ] ; 1 9 ( 3 ) . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/12627143/.
  15. Schollin-Borg M, Michaëlsson K, Rahme H. Presentation, Outcome, and Cause of Septic Arthritis after Anterior Cruciate Ligament Reconstruction: A Case Control Study. Arthrosc – J Arthrosc Relat Surg [Internet]. 2003 [cited 2020 Oct 2 9 ] ; 1 9 ( 9 ) : 9 4 1 – 7 . A v a i l a b l e f r o m: Presentation, outcome, and cause of septic arthritis after anterior cruciate ligament reconstruction: a case control study – PubMed (nih.gov)
  16. Cancienne JM, Gwathmey FW, Miller MD, Werner BC. Tobacco Use Is Associated with Increased Complications after Anterior Cruciate Ligament Reconstruction. Am J Sports Med [Internet]. 2016 Jan 1 [cited 2021 Feb 5];44(1):99–104. Available from: http://journals.sagepub.com/doi/10.1177/0363546515610505
  17. Geethan I, Easwaran R, Sahanand S, Sivaraman A, Gupta A, Devgan A, et al. Management Guidelines for Infection After ACL Reconstruction: Expert Opinion Statement Based on the Modified Delphi Survey of Indian Arthroscopy Surgeons. Indian J Orthop [Internet]. 2021 Feb 1 [cited 2021 Feb 3];1–10. Available from: http://link.springer.com/10.1007/s43465-021- 00363-z
  18. Bibbo C, Patel D V., Gehrmann RM, Lin SS. Chlorhexidine provides superior skin decontamination in foot and ankle surgery: A prospective randomized study. Clin Orthop Relat Res [Internet]. 2005 [cited 2021 Feb 3];438(438):204–8. Available from: https://pubmed.ncbi.nlm.nih.gov/16131892/
  19. Lee I, Agarwal RK, Lee BY, Fishman NO, Umscheid CA. Systematic Review and Cost Analysis Comparing Use of chlorhexidine with Use of Iodine for Preoperative Skin Antisepsis to Prevent Surgical Site Infection. Infect Control Hosp Epidemiol [Internet]. 2010 Dec [cited 2021 Feb 3 ] ; 3 1 ( 1 2 ) : 1 2 1 9 – 2 9 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/20969449/
  20. WHO Surgical Site infection Prevention Guidelines Web Appendix 7 Summary of a systematic review on the effectiveness and optimal method of hair removal [Internet]. [cited 2020 Oct 27]. Available from: http://gradepro.org/
  21. Pérez-Prieto D, Portillo ME, Torres-Claramunt R, Pelfort X, Hinarejos P, Monllau JC. Contamination occurs during ACL graft harvesting and manipulation, but it can be easily eradicated. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2018 Feb 1 [cited 2021 Jan 17];26(2):558–62. Available from: https://pubmed.ncbi.nlm.nih.gov/28988312/
  22. Parada SA, Grassbaugh JA, DeVine JG, Arrington ED. Instrumentation-specific infection after anterior cruciate ligament reconstruction. Vol. 1, Sports Health. 2009. p. 481–5.
  23. Tuman J, Diduch DR, Baumfeld JA, Rubino LJ, Hart JM. Joint Infection Unique to Hamstring Tendon Harvester Used During Anterior Cruciate Ligament Reconstruction Surgery. Arthrosc – J Arthrosc Relat Surg. 2008 May;24(5):618–20.
  24. Werner CML, Necas T, Schneeberger AG. Defects of camera covers after arthroscopic surgery. J Shoulder Elb Surg [Internet]. 2006 Mar [cited 2021 Feb 4];15(2):199–202. Available from: https://pubmed.ncbi.nlm.nih.gov/16517365/
  25. Bansal A, Lamplot JD, VandenBerg J, Brophy RH. Meta[1]analysis of the Risk of Infections After Anterior Cruciate Ligament Reconstruction by Graft Type. Am J Sports Med [Internet]. 2018 May 1 [cited 2021 Feb 5];46(6):1500–8. A v a i l a b l e f r o m : http://journals.sagepub.com/doi/10.1177/0363546517714450
  26. Hurvitz AP, Prentice HA, Funahashi TT, Maletis GB. Screw and Sheath Tibial Fixation Associated With a Higher Likelihood of Deep Infection After Hamstring Graft Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2020 Mar 1;48(4):806–11.
  27. Pérez-Prieto D, Portillo ME, Torres-Claramunt R, Pelfort X, Hinarejos P, Monllau JC. Contamination occurs during ACL graft harvesting and manipulation, but it can be easily eradicated. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2018 Feb 1 [cited 2020 Nov 17];26(2):558–62. Available from: https://pubmed.ncbi.nlm.nih.gov/28988312/
  28. Badran MA, Moemen DM. Hamstring graft bacterial contamination during anterior cruciate ligament reconstruction: clinical and microbiological study. Int Orthop [Internet]. 2016 Sep 1 [cited 2021 Jan 17];40(9):1899–903. Available from: https://link.springer.com/article/10.1007/s00264-016-3168-5.
  29. Grayson JE, Grant GD, Dukie S, Vertullo CJ. The in vitro elution characteristics of vancomycin from tendons. Clin Orthop Relat Res [Internet]. 2011 [cited 2020 Nov 17];469(10):2948–52. Available from: https://pubmed.ncbi.nlm.nih.gov/21246314/
  30. Vertullo CJ, Quick M, Jones A, Grayson JE. A surgical technique using presoaked vancomycin hamstring grafts to decrease the risk of infection after anterior cruciate ligament reconstruction. Arthrosc – J Arthrosc Relat Surg. 2012 Mar;28(3):337–42.
  31. Schuster P, Schlumberger M, Mayer P, Raoulis VA, Oremek D, Eichinger M, et al. Lower incidence of post-operative septic arthritis following revision anterior cruciate ligament reconstruction with quadriceps tendon compared to hamstring tendons. Knee Surgery, Sport Traumatol Arthrosc. 2020.
  32. Pérez-Prieto D, Torres-Claramunt R, Gelber PE, Shehata TMA, Pelfort X, Monllau JC. Autograft soaking in vancomycin reduces the risk of infection after anterior cruciate ligament reconstruction. Knee Surgery, Sport Traumatol Arthrosc. 2016 Sep 1;24(9):2724–8.
  33. Offerhaus C, Balke M, Hente J, Gehling M, Blendl S, Höher J. Vancomycin pre-soaking of the graft reduces postoperative infection rate without increasing risk of graft failure and arthrofibrosis in ACL reconstruction. Knee Surgery, Sport Traumatol Arthrosc. 2019 Sep 1;27(9):3014–21
  34. Wan KH-M, Tang SP-K, Lee RH-L, Wong KK, Wong K-K. The use of vancomycin-soaked wrapping of hamstring grafts to reduce the risk of infection after anterior cruciate ligament reconstruction: An early experience in a district general hospital. Asia-Pacific J Sport Med Arthrosc Rehabil Technol [Internet]. 2020 Oct 1 [cited 2020 Oct 25];22:10–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32642443
  35. Figueroa D, Figueroa F, Calvo R, Lopez M, Goñi I. Presoaking of Hamstring Autografts in Vancomycin Decreases the Occurrence of Infection Following Primary Anterior Cruciate Ligament Reconstruction. Orthop J Sport Med. 2019;7(9).
  36. Xiao M, Sherman SL, Safran MR, Abrams GD. Surgeon practice patterns for pre-soaking ACL tendon grafts in vancomycin: a survey of the ACL study group. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 [cited 2021 Jan 17]; Available from: https://pubmed.ncbi.nlm.nih.gov/32902684/
  37. Phegan M, Grayson JE, Vertullo CJ. No infections in 1300 anterior cruciate ligament reconstructions with vancomycin pre-soaking of hamstring grafts. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2016 Sep 1 [cited 2021 Jan 1 7 ] ; 2 4 ( 9 ) : 2 7 2 9 – 3 5 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/25771788/
  38. Naendrup JH, Marche B, de Sa D, Koenen P, Otchwemah R, Wafaisade A, et al. Vancomycin-soaking of the graft reduces the incidence of septic arthritis following ACL reconstruction: results of a systematic review and meta-analysis. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 Apr 1 [cited 2 0 2 1 J a n 1 7 ] ; 2 8 ( 4 ) : 1 0 0 5 – 1 3 . Av a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/30656372/
  39. Jacquet C, Jaubert M, Pioger C, Sbihi A, Pithioux M, Le Baron M, et al. Presoaking of Semitendinosus Graft With Vancomycin Does Not Alter Its Biomechanical Properties: A Biomechanical In Vitro–Controlled Study Using Graft From Living Donors. Arthrosc – J Arthrosc Relat Surg [Internet]. 2020 Aug 1 [cited 2 0 2 1 J a n 1 7 ] ; 3 6 ( 8 ) : 2 2 3 1 – 6 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/32304710/
  40. Lamplot JD, Liu JN, Hutchinson ID, Chen T, Wang H, Wach A, et al. Effect of Vancomycin Soaking on Anterior Cruciate Ligament Graft Biomechanics. Arthrosc – J Arthrosc Relat Surg [Internet]. 2 0 2 0 [ c i t e d 2 0 2 1 J a n 1 7 ] ; A v a i l a b l e f r o m : Effect of Vancomycin Soaking on Anterior Cruciate Ligament Graft Biomechanics – PubMed (nih.gov)
  41. Pérez-Prieto D, Perelli S, Corcoll F, Rojas G, Montiel V, Monllau JC. The vancomycin soaking technique: no differences in autograft re-rupture rate. A comparative study. Int Orthop [Internet]. 2020 [cited 2021 Jan 17]; Available from: https://pubmed.ncbi.nlm.nih.gov/32944802/
  42. Bohu Y, Klouche S, Sezer HB, Herman S, Grimaud O, Gerometta A, et al. Vancomycin-soaked autografts during ACL reconstruction reduce the risk of post-operative infection without affecting return to sport or knee function. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 Aug 1 [cited 2021 Jan 1 7 ] ; 2 8 ( 8 ) : 2 5 7 8 – 8 5 . A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/32025764/
  43. Carney J, Heckmann N, Mayer EN, Alluri RK, Vangsness CT, Hatch GF, et al. Should antibiotics be administered before arthroscopic knee surgery? Asystematic review of the literature [Internet]. Vol. 9, World Journal of Orthopaedics. Baishideng Publishing Group Co; 2018 [cited 2021 Jan 15]. p. 262–70. Available from: https://pubmed.ncbi.nlm.nih.gov/30479973/
  44. Jefferies JG, Aithie JMS, Spencer SJ. Vancomycin-soaked wrapping of harvested hamstring tendons during anterior cruciate ligament reconstruction. A review of the ‘vancomycin wrap.’Vol. 26, Knee. Elsevier B.V.; 2019. p. 524–9.
  45. Yazdi H, Gomrokchi AY, Nazarian A, Lechtig A, Hanna P, Ghorbanhoseini M. The effect of gentamycin in the irrigating solution to prevent joint infection after anterior cruciate ligament (ACL) reconstruction. Arch Bone Jt Surg. 2019 Jan 1;7(1):67–74.
  46. Barbier O, Danis J, Versier G, Ollat D. When the tendon autograft is dropped accidently on the floor: A study about bacterial contamination and antiseptic efficacy. Knee. 2015 Oct 1;22(5):380–3.
  47. Plante MJ, Li X, Scully G, Brown MA, Busconi BD, DeAngelis NA. Evaluation of sterilization methods following contamination of hamstring autograft during anterior cruciate ligament reconstruction. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2013 May 15 [cited 2021 Jan 17];21(3):696–701. A v a i l a b l e f r o m : https://link.springer.com/article/10.1007/s00167-012-2049-8.
  48. Oh HL, Chen DB, Seeto BG, MacDessi SJ. Mycobacterium fortuitum infection after anterior cruciate ligament reconstruction using a polylactic acid bioabsorbable screw: Case report. Knee. 2010 Mar;17(2):176–8.
  49. Vallianatos PG, Tilentzoglou AC, Koutsoukou AD. Septic Arthritis Caused by Erysipelothrix rhusiopathiae Infection after Arthroscopically Assisted Anterior Cruciate Ligament Reconstruction. Arthroscopy. 2003;19(3).
  50. Metcalf K, Ko JWK, Quilici S, Barnes P, Crawford DC. Differentiating Occult Propionibacterium acnes Infection From Aseptic “Biologic” Interference Screw Hydrolysis After Anterior Cruciate Ligament Reconstruction: Introducing a Novel Culture Protocol for Detecting Low-Virulence Organisms. Orthop J Sport Med. 2015 Oct 23;3(10).
  51. Rhee SM, Kim MS, Kim JD, Ro K, Ko YW, Rhee YG. Hematologic Expression After Shoulder Surgery: Normalization Curve of Serum Inflammatory Markers. Arthrosc – J Arthrosc Relat Surg. 2021 Jan 1;37(1):71–82.
  52. Nam JH, Cho MR, Lee SH, Song SK, Choi WK. C-reactive protein course after classical complication free total knee arthroplasty using navigation. Knee Surg Relat Res [Internet]. 2020 Dec 1 [cited 2021 Feb 6];32(1):56. Available from: https://kneesurgrelatres.biomedcentral.com/articles/10.1186/ s43019-020-00074-z
  53. Costa GG, Grassi A, Lo Presti M, Cialdella S, Zamparini E, Viale P, et al. White Blood Cell Count is the most Reliable Test for the Diagnosis of Septic Arthritis after Anterior Cruciate Ligament Reconstruction. An observational study on 38 patients. Arthrosc J Arthrosc Relat Surg [Internet]. 2020 Dec [ c i t e d 2 0 2 1 J a n 1 7 ] ; A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/33278527/
  54. Ligament Reconstruction. An observational study on 38 patients. Arthrosc J Arthrosc Relat Surg [Internet]. 2020 Dec [ c i t e d 2 0 2 1 J a n 1 7 ] ; A v a i l a b l e f r o m : https://pubmed.ncbi.nlm.nih.gov/33278527/
  55. Pérez-Prieto D, Trampuz A, Torres-Claramunt R, Eugenia Portillo M, Puig-Verdié L, Monllau JC. Infections after Anterior Cruciate Ligament Reconstruction: Which Antibiotic after Arthroscopic Debridement? J Knee Surg [Internet]. 2017 May 1 [cited 2021 Jan 17];30(4):309–13. Available from: https://pubmed.ncbi.nlm.nih.gov/27367205/
  56. Pogorzelski J, Themessl A, Achtnich A, Fritz EM, Wörtler K, Imhoff AB, et al. Septic Arthritis After Anterior Cruciate Ligament Reconstruction: How Important Is Graft Salvage? Am J Sports Med. 2018 Aug 1;46(10):2376–83.
  57. Waterman BR, Arroyo W, Cotter EJ, Zacchilli MA, Garcia ESJ, Owens BD. Septic Arthritis After Anterior Cruciate Ligament Reconstruction: Clinical and Functional Outcomes Based on Graft Retention or Removal. Orthop J Sport Med. 2018 Feb26;6(3).
  58. Kusnezov N, Eisenstein ED, Dunn JC, Wey AJ, Peterson DR, Waterman BR. Anterior Cruciate Ligament Graft Removal Versus Retention in the Setting of Septic Arthritis After Reconstruction: A Systematic Review and Expected Value Decision Analysis. Vol. 34, Arthroscopy – Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2018. p. 967–75.
  59. Cote MP. Editorial Commentary: Graft Removal Versus Retention for Septic Arthritis After Anterior Cruciate Ligament Reconstruction: Accounting for Patient Preference Flips the Script on Current Practice [Internet]. Vol. 34, Arthroscopy – Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2018 [cited 2021 Jan 15]. p. 976–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29502709/
  60. Makhni EC, Steinhaus ME, Mehran N, Schulz BS, Ahmad CS. Functional Outcome and Graft Retention in Patients with Septic Arthritis after Anterior Cruciate Ligament Reconstruction: A Systematic Review. Vol. 31, Arthroscopy – Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2015. p. 1392–401.

How to Cite this article: Geethan I, Easwaran R. Guidelines on Infection after ACL Reconstruction. Journal of Clinical Orthopaedics Jan-Jun 2021;6(1): 53-59.

 (Abstract    Full Text HTML)   (Download PDF)


Translate this page into:

Role of anterolateral reconstruction in ACL surgery. Why, When and How?

Journal of Clinical Orthopaedics | Vol 6 | Issue 1 |  Jan-Jun 2021 | page: 45-52 | Philippe Landreau


Author: Philippe Landreau [1]

[1] DxBone, Bone and Joint Excellence Center Dubai, United Arab Emirates

Address of Correspondence
Dr. Philippe Landreau,
DxBone, Bone and Joint Excellence Center Dubai, United Arab Emirates
E-mail: landreau@mac.com


Abstract

Ruptures of the anterior cruciate ligament (ACL) cause both abnormal anterior translation and anterolateral rotation of the tibia under the femur. Isolated intra-articular ACL reconstruction has evolved significantly over the past years, but in many cases it is insufficient to correct rotational laxity. There are several justifications for anterolateral plasty in the context of ACL surgery: The persistence of anterolateral laxity after some isolated ACL intra-articular reconstructions, the evidence of traumatic lesions of these anterolateral structures after ACL tear and the recent anatomical and biomechanical research on the anterolateral complex of the knee. One more justification is that some recent studies comparing the outcomes after isolated ACL reconstruction and those after ACL reconstruction combined with anterolateral reconstruction are in favor of the simultaneous procedures. The addition of an extra-articular procedure to the intra-articular reconstruction of the ACL can improve the outcomes particularly in these situations: Young age (<25 ans), sports with pivot contact particularly if high level, pivot-shift Grades 2–3, recurvatum of the knee and generalized hyperlaxity, posterior tibial slope superior to 12°, meniscus deficiency, and ACL revision. Different surgical techniques have been proposed and described. They can be classified in two groups: The techniques using an ilio-tibial band graft to perform a lateral tenodesis and the procedures aiming to reconstruct the anterolateral ligament. Both techniques intend to control the anterolateral displacement of the tibial plateau.
Keywords: Anterolateral ligament, anterior cruciate ligament, anterolateral reconstruction, lateral tenodesis, condylar strap


References

  1. Lemaire M. Rupture ancienne du ligament croisé antérieur du genou: fréquence, clinique, traitement (46 cas). J Chir 1967;83:311:311.
  2. Macintosh D, Darby T. Lateral substitution reconstruction. In: Proceedings of the Canadian Orthopaedic Association. J Bone Joint Surg Br 1976;58(1):142.
  3. Losee RE, Johnson TR, Southwick WO. Anterior subluxation of the lateral tibial plateau. Adiagnostic test and operative repair. J Bone Joint Surg Am. 1978 Dec;60(8):1015-30.
  4. Ellison AE. Distal iliotibial-band transfer for anterolateral rotatory instability of the knee. J Bone Joint Surg Am. 1979 Apr;61(3):330-7.
  5. Andrews JR, Sanders R. A “mini-reconstruction” technique in treating anterolateral rotatory instability (ALRI). Clin Orthop Relat Res. 1983;(172):93-6.
  6. Marshall JL, Warren RF, Wickiewicz TL. Primary surgical treatment of anterior cruciate ligament lesions. Am J Sports Med. 1982;10(2):103-7.
  7. Sonnery-Cottet B, Thaunat M, Freychet B, et al. Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 2015;43:1598–43:1.
  8. Ardern CL, Webster KE, Taylor NF, et al. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45:596–45:5.
  9. Ardern CL, Webster KE, Taylor NF, et al. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery. Two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39:538–39.
  10. Wright RW, Magnussen RA, Dunn WR, et al. Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction. Asystematic review. J Bone Joint Surg Am. 2011 Jun 15;93(12):1159-65.
  11. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Am J Sports Med. 2016 Jan 15.
  12. Segond P. Recherches cliniques et expérimentales sur les épanchements sanguins du genou par entorse. Prog Med. 1879;7: 297–9 3:297–9, 319–21, 340–1.
  13. Monaco E, Helito CP, Redler A, Argento G, De Carli A, Saithna A, Helito PVP, Ferretti A. Correlation Between Magnetic Resonance Imaging and Surgical Exploration of the Anterolateral Structures of the Acute Anterior Cruciate Ligament-Injured Knee. Am J Sports Med. 2019 Apr;47(5):1186- 1193.
  14. Vesalius A. De Humani Corporis Fabrica. Lib II, Cap 53. Padua: University of Padua; 1543.
  15. Kaplan EB. The iliotibial tract; clinical and morphological significance. J Bone Joint Surg Am. 1958 Jul;40-A(4):817-32.
  16. Terry GC, Hughston JC, Norwood LA. The anatomy of the iliopatellar band and iliotibial tract. Am J Sports Med. 1986 Jan[1]Feb;14(1):39-45.
  17. Vieira EL, Vieira EA, da Silva RT, Berlfein PA, Abdalla RJ, Cohen M. An anatomic study of the iliotibial tract. Arthroscopy. 2007 Mar;23(3):269-74.
  18. Vincent JP, Magnussen RA, Gezmez F, et al. The anterolateral liga- ment of the human knee: an anatomical and histologic study. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):147- 152.
  19. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat 2013;223:321–22.
  20. Claes S, Luyckx T, Vereecke E, Bellemans J. The Segond fracture: a bony injury of the anterolateral ligament of the knee. Arthroscopy. 2014 Nov;30(11):1475-82.
  21. Geeslin AG, Chahla J, Moatshe G, Muckenhirn KJ, Kruckeberg BM, Brady AW, Coggins A, Dornan GJ, Getgood AM, Godin JA, LaPrade RF. Anterolateral Knee Extra-articular Stabilizers: A Robotic Sectioning Study of the Anterolateral Ligament and Distal Iliotibial Band Kaplan Fibers. Am J Sports Med. 2018 May;46(6):1352-1361.
  22. Landreau P, Catteeuw A, Hamie F, Saithna A, Sonnery-Cottet B, Smigielski R. Anatomic Study and Reanalysis of the Nomenclature of the Anterolateral Complex of the Knee Focusing on the Distal Iliotibial Band: Identification and Description of the Condylar Strap. Orthop J Sports Med. 2019 Jan 17;7(1):2325967118818064.
  23. Engebretsen L, Lew WD, Lewis JL, Hunter RE. The effect of an iliotibial tenodesis on intraarticular graft forces and knee joint motion. Am J Sports Med. 1990 Mar-Apr;18(2):169-76.
  24. Monaco E, Maestri B, Conteduca F, Mazza D, Iorio C, Ferretti A. Extra-articular ACL reconstruction and pivot shift: in vivo dynamic evaluation with navigation. Am J Sports Med 2014;42:1669–42
  25. Marom N, Ouanezar H, Jahandar H, Zayyad ZA, Fraychineaud T, Hurwit D, Imhauser CW, Wickiewicz TL, Pearle AD, Nawabi DH. Lateral Extra-articular Tenodesis Reduces Anterior Cruciate Ligament Graft Force and Anterior Tibial Translation in Response to Applied Pivoting and Anterior Drawer Loads. Am J Sports Med. 2020 Nov;48(13):3183-3193.
  26. Noyes FR, Barber SD. The effect of an extra-articular procedure on allograft reconstructions for chronic ruptures of the anterior cruciate ligament. J Bone Joint Surg Am. 1991;73(6):882-892.
  27. O’Brien SJ, Warren RF, Wickiewicz TL, et al. The iliotibial band lateral sling procedure and its effect on the results of anterior cruciate ligament reconstruction. Am J Sports Med. 1991;19(1):21-24.
  28. Devitt BM, Bouguennec N, Barfod KW, Porter T, Webster KE, Feller JA. Combined anterior cruciate ligament reconstruction and lateral extra-articular tenodesis does not result in an increased rate of oste- oarthritis: a systematic review and best evidence synthesis. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1149-1160.
  29. Pernin J, Verdonk P, Si Selmi TA, Massin P, Neyret P. Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation. Am J Sports Med. 2010;38(6):1094-1102.
  30. Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, et al. Over[1]the-top ACL reconstruction plus extra-articular lateral tenodesis with ham- string tendon grafts: prospective evaluation with 20- year minimum follow-up. Am J Sports Med. 2017;45(14):3233- 3242.
  31. Getgood AMJ et al. Lateral Extra-articular Tenodesis Reduces Failure of Hamstring Tendon Autograft Anterior Cruciate Ligament Reconstruction: 2-Year Outcomes From the STABILITY Study Randomized Clinical Trial. Am J Sports Med. 2020 Feb;48(2):285-297.
  32. Trojani C, Beaufils P, Burdin G, Bussière C, Chassaing V, Djian P, Dubrana F, Ehkirch FP, Franceschi JP, Hulet C, Jouve F, Potel JF, Sbihi A, Neyret P, Colombet P. Revision ACL reconstruction: influence of a lateral tenodesis. Knee Surg Sports Traumatol Arthrosc. 2012 Aug;20(8):1565-70.
  33. Bertoia JT, Urovitz EP, Richards RR, Gross AE. Anterior cruciate reconstruction using the MacIntosh lateral-substitution over[1]the-top repair. J Bone Joint Surg Am. 1985 Oct;67(8):1183-8.
  34. Duthon VB, Magnussen RA, Servien E, Neyret P. ACL reconstruction and extra-articular tenodesis. Clin Sports Med. 2013 Jan;32(1):141-53.
  35. Lerat JL, Dupré La Tour L, Herzberg G, Moyen B. Revue de 100 patients opérés pour laxité chronique antérieure du genou par un procédé dérivé des méthodes de K. Jones et de D. MacIntosh. Intérêt de la radiographie dynamique pour l’analyse objective des résultats [Review of 100 patients operated on for chronic anterior laxity of the knee by a procedure derived from the Jones and MacIntosh methods. Value of dynamic radiography for the objective analysis of the results]. Rev Chir Orthop Reparatrice Appar Mot. 1987;73 Suppl 2:201-4.
  36. Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, et al. Over[1]the-top ACL reconstruction plus extra-articular lateral tenodesis with ham- string tendon grafts: prospective evaluation with 20- year minimum follow-up. Am J Sports Med. 2017;45(14):3233-3242.
  37. Smith JO, Yasen SK, Lord B, Wilson AJ. Combined anterolateral ligament and anatomic anterior cruciate ligament reconstruction of the knee. Knee Surg Sports Traumatol Arthrosc. 2015 Nov;23(11):3151-6.
  38. Helito CP, Bonadio MB, Gobbi RG, da Mota E Albuquerque RF, Pécora JR, Camanho GL, Demange MK. Combined Intra- and Extra-articular Reconstruction of the Anterior Cruciate Ligament: The Reconstruction of the Knee Anterolateral Ligament. Arthrosc Tech. 2015 Jun 1;4(3).

How to Cite this article: SLandreau P. Role of anterolateral reconstruction in ACL surgery, why, when and how?. Journal of Clinical Orthopaedics Jan-Jun 2021;6(1):45-52.

 (Abstract    Full Text HTML)   (Download PDF)